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Intragenic microdeletion of RUNX2 is a novel mechanism
for cleidocranial dysplasia
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Abstract Cleidocranial dysplasia (CCD; MIM 119600) is

a rare autosomal dominant disorder characterized by facial,

dental, and skeletal malformations. To date, rearrangement

and mutations involving RUNX2, which encodes a tran-

scription factor required for osteoblast differentiation on

6p21, has been the only known molecular etiology for

CCD. However, only 70% patients were found to have

point mutations, 13% large/contiguous deletion but the rest

of 17% remains unknown. We ascertained a family con-

sisted of eight affected individuals with CCD phenotypes.

Direct sequencing analysis revealed no mutations in the

RUNX2. Real time quantitative PCR were performed which

revealed an exon 2 to exon 6 intragenic deletion in RUNX2.

Our patients not only demonstrated a unique gene change

as a novel mechanism for CCD, but also highlight the

importance of considering ‘‘deletion’’ and ‘‘duplication’’ in

suspected familial cases before extensive effort of gene

hunting be carried.
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Introduction

Cleidocranial dysplasia (CCD; MIM 119600) is a rare

autosomal dominant human skeletal disorder. The clinical

features of CCD include facial and dental malformations

characterized by delayed closure frontanelles, frontal

bossing, absent clavicles, short stature, late eruption, and

supernumerary permanent teeth and other skeletal anoma-

lies (Mundlos 1999). There is considerable phenotypic

variation for CCD, even within families (Chitayat et al.

1992). Mutations in the runt-related transcription factor 2

gene (RUNX2, also known as CBFA1, PEBP2aA, and

AML3) located on chromosome 6p21 (Mundlos et al. 1997)

have been identified as the cause of CCD. RUNX2 is one of

the three mammalian homologs of the Drosophila runt

gene, which encodes a transcription factor required for

osteoblast differentiation. RUNX2 spans a region over 220

kb in 6p21 and is composed of eight exons and several

splice variants have been described (Geoffroy et al. 1998).

It has also been reported that RUNX2 is transcribed from

two promoters (the distal promoter P1 and the proximal

promoter P2) (Stewart et al. 1997). Numerous mutations in
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RUNX2 have been identified in patients with CCD (Otto

et al. 2002; Yoshida et al. 2002; Zhou et al. 1999). Most of

the missense mutations were located in the runt region

(Baumert et al. 2005; Otto et al. 2002; Yoshida et al. 2002)

involving heterodimerization and DNA binding with

CBFb. This discrepancy in distribution could be explained

by that the runt domain is highly conserved and is less

resistant to single nucleotide changes. Nonsense, splicing

mutation, and insertion/deletions were also found and they

were scattered throughout the entire RUNX2 gene. Deletion

of the entire RUNX2 gene or larger has been described

(Mundlos et al. 1995, 1997; Otto et al. 2002; Quack et al.

1999) and in one case the deletion spanning both RUNX2

and its upstream VEGF gene with the patient exhibiting

both CCD and cardiovascular defects (Izumi et al. 2006).

Numerous CCD patients without any detectable muta-

tions in RUNX2 by sequencing or FISH have been

identified (Kim et al. 2006; Otto et al. 2002; Quack et al.

1999; Yoshida et al. 2002). This would indicate a genetic

heterogeneity such as mutation in RUNX2 gene’s inter-

acting proteins or regulatory elements or due to other

mechanism that was not yet reported. One recent study

identified a case with CBFb mutation which encodes an

interacting molecule of RUNX2. This individual did not

have classical CCD phenotypes but exhibited delayed skull

ossification and cleft palate (Khan et al. 2006).

In this study, we ascertained an extended family with

many have classic yet severe CCD phenotypes. However,

sequencing analysis did not reveal any mutations in

RUNX2 and the results of FISH study were not confirma-

tive. Further analysis using real time PCR, Southern blot,

and reverse PCR revealed a novel microdeletion of about

125.6 kb and defined the breakage points in one allele of

the gene. While intra-gene deletion involving multiple

exons has been reported in many other genes, it has not

been reported in CCD. The molecular mechanism for such

deletion and the characteristic phenotype in this family are

also discussed.

Materials and methods

Patients

The extended CCD family was ascertained in a tertiary

medical center. Proband III: 3 (pedigree see Fig. 1) was

initially evaluated for hypertelorism and developmental

delay; however, was later excluded to suffer from CCD.

Given the provided family history of CCD, 28 out of the 47

traceable extended family members were recruited for this

study. Clinical evaluations were performed on all the par-

ticipants for typical signs of CCD including radiographs to

detect abnormalities in clavicles, skulls, and hand. About

10 ml of blood was drawn for DNA extraction. About 10

ml of blood was also drawn from three individuals (two

normal individuals and one patient) for cell line transfor-

mation used for FISH analysis. This project has been

approved by the Institution Review Board of Academia

Sinica and China Medical University. Informed consent

was obtained from every participating individual.

Real time quantitative PCR (qPCR) for copy number

analysis

RUNX2 copy number was determined by real time quan-

titative PCR reactions performed using Power SYBR

GREEN PCR Master kit (Applied Biosystems, Foster City,

CA, USA). Three independent experiments were per-

formed to determine the variation in copy number between

CCD patients and normal individuals with duplicate sam-

ples for each experiment. The RT-qPCR primers were

designed according to manufacturer’s instruction. Primers

were designed to detect copy number of the promoter,

exons, and 30 UTR regions of RUNX2. The qPCR reactions

were performed using the ABI Prism� 7900HT Sequence

Detection system and the fluorescent signal intensity was

recorded on ABI Prism 7900HT Sequence Detection sys-

tem and analyzed by Sequence Detector v2.3 software.

Fig. 1 Pedigree of the extended

family with CCD phenotypes.

The 28 subjects recruited in this

study are numbered. The arrow

indicates the proband
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

was used as control. The formula for calculating copy

number was: copy number = 2 * 2-(DCtp - DCtn) where Ct

was the threshold cycle defined as the mean cycle at which

the fluorescence curve reached an arbitrary threshold; DCt

was calculated as Ct of RUNX2 - Ct of GAPDH, DCtp

was the DCt of patients, and DCtn was the DCt of normal

individuals. Two normal individuals were used in the

experiments.

Inverse PCR for deletion mapping

Inverse PCR is a method for the rapid in vitro amplification

of unknown DNA sequences that is flanked by a region of

known sequences (Ochman et al. 1988). Restriction diges-

tion was first carried out as described above and the enzymes

were inactivated at 65�C for 20 min. The digested DNA

fragments were allowed for self-ligation to generate circular

DNA. Amplification was then performed with outward

facing primers 50-GTTCCTGCAAAGAATGGTCC-30 and

50-TAGAGCAGGGAAACCCACAG-30. Sequencing of the

unknown region can then be performed on the amplified

DNA with the above primers.

Results

Clinical data

Of the 28 individuals recruited for this study, 8 were

confirmed with CCD (Fig. 1). The eight affected individ-

uals in the CCD family all had delayed closure

frontanelles, frontal bossing, clavicles hypoplasia, dental

anomalies, and short stature. The average adult height was

137 cm (\2 percentile) for the adult female CCD patient

and 150 cm (\5 percentile) for the adult male CCD

patients. Age of the patients ranged from 6 to 67 years old.

No other medical conditions were present other than the

presence of osteoarthritis in the elderly patients (I:5 and

I:8). In addition to the typical CCD phenotypes, the

patients also exhibit unusual CCD phenotypes such as

hypoplasia in the distal phalanges and all middle phalanges

have cone-shaped epiphyses (Fig. 2).

Molecular analysis of the RUNX2 gene

Initial sequencing of all exons, intro-exon junctions, and 2

kb upstream of transcription start site of the RUNX2 failed

to identify any mutations in the gene. FISH analysis was

subsequently performed on one patient (I:8) and one nor-

mal control in this extended family to determine the

presence of deletions in RUNX2. The signals on one of the

chromosome 6 homologs in the patient’s cells appeared

weakened (data not shown). These findings suggested that

one of the chromosome 6 of the CCD patient could have

deletion involving a portion of the RUNX2 gene.

Real time quantitative PCR (RT-qPCR) was performed

to determine the copy number of each of the exons and the

30UTR of RUNX2. The qPCR results of eight CCD patients

and two normal individuals in this extended three genera-

tion family revealed that RUNX2 was deleted from exon

2 to exon 6 in all eight patients as indicated by the copy

number of one while the normal individuals had the normal

copy number of two (Fig. 3). This demonstrated that the

intragenic deletion was the cause of CCD in this family.

Southern blot analysis was next performed to narrow

down the region that harbored the 30 break point and

mapped the 30 breakage point to within 1 kb between exon

6 and exon 6.1 (data not shown). This also confirmed the

qPCR data that the deletion was indeed present.

Inverse PCR was then performed on the restriction

digest fragments and the resulting circular DNAs were

sequenced (data not shown). By comparing the sequence

from inverse PCR to the reference sequence of RUNX2, the

break points of the deletion were identified (Fig. 4a). A

total of 125.6 kb was deleted, spanning intron 1 (IVS +

77447) to intron 6 (IVS6 + 19466) with both ends of

Fig. 2 Radiograph of patient I:8 showing phalange abnormalities
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breakage points containing ATC (Fig. 4). Sequence of the

break points was also confirmed by direct sequencing.

Discussion

The work presented here described the first large intragenic

microdeletion: exons 2–6 were deleted in the three gener-

ation CCD family. This deletion created a truncated protein

without most of the N-terminal domain. Without the DNA

binding runt domain, this protein was unable to modulate

transcription of RUNX2 downstream genes. Consequently,

CCD phenotype arose as a result of haploinsufficiency of

RUNX2 (Mundlos et al. 1997; Otto et al. 1997).

This family was significantly shorter than the reported

cases (137 vs 156) and (150 vs 165) (Cooper et al. 2001).

The average height of the affected adults was 148 cm.

While we cannot exclude the contribution of ethnic

background for the shorter stature, the short distal pha-

langeal hyperplasia and small hands were very significant

in this family and could be explained by this intragenic

deletion. Cesarean section has been reported to be unusu-

ally high up to 69% (Cooper et al. 2001); however, it is not

reported in this family.

Using Southern blot and inverse PCR, we have deter-

mined precisely the breakage points of the RUNX2 deletion

in this three generation CCD family. It is interesting to note

that both ends contain the same three nucleotides ATC.

However, the sequence homology is probably too short for

homologous recombination to occur. Thus, this particular

intragenic deletion is most likely generated through non-

homologous end joining.

FISH is a useful tool to detect microdeletion; however,

its sensitivity depends on the size of the microdeletion and

the location and size of the probe. The BAC clone used,

RP11-1019C24 (191 kb), located within the RUNX2 gene

(220 kb) should be the best probe for the detection of

RUNX2 deletions. However, even with this probe the FISH

study was inconclusive due to the partial RUNX2 deletion.

The work described here can also be a good example for

other studies. While genetic heterogeneity and pathway

molecules can be the alternative mechanism when a

mutation is not found, we suggest detailed study for a

known gene before ever-ending effort in linkage be put

forward as a general rule. When sequence variants are not

detected by direct sequencing, real time PCR assays similar

to the one used in this study or MLPA would allow

detection of gene deletion or duplication efficiently.

In summary, we have identified the first intragenic mic-

rodeletion in RUNX2 in a CCD family. Current clinical

testing by sequence-based study only detects 60–70% of

individuals with a clinical diagnosis of CCD. Microdeletion

Fig. 3 Analysis of RUNX2 copy number using RT-qPCR. Copy

number of RUNX2 was determined for all the exons and 30UTR. I:2,

I:5, I:8, II:1, II:5, II:8, III:1, III:2 were patients and II:2 and II:6 were

controls from the CCD extended family. S1 was a sporadic case

Fig. 4 Mapping of the RUNX2 deletion in the CCD family. (a)

Sequencing of the inverse PCR products revealed the exact breakage

point which is indicated by the arrows. The top and the bottom lines

represent the sequences close to the break point in introns 1 and 6,

respectively. (b) Schematic of the deletion which is 125.6 kb long and

encodes most of the important functional domains of RUNX2

48 Genomic Med. (2008) 2:45–49

123



with contiguous deletion has been suggested to account for

another 13% (Mendoza-Londono and Lee 2008). In our

cohort, 28% is due to deletion (unpublished data). Our

patients demonstrated a rare and novel deletion for CCD. We

therefore suggest that in patients whose mutation is not found

by traditional sequencing, the deletion/duplication assay,

either RT-qPCR/MLPA, needs to be done particularly in a

disease haploid insufficiency is thought to be the main cause.

The deletion/duplication assay can improve the molecular

diagnosis of CCD and likely change the statistics of molec-

ular mechanism of this disease.
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