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Abstract The 3¢ untranslated regions (3¢ UTRs) of

human protein-coding genes play a pivotal role in the

regulation of mRNA 3¢ end formation, stability/deg-

radation, nuclear export, subcellular localisation and

translation, and hence are particularly rich in cis-acting

regulatory elements. One recent addition to the

already large repertoire of known cis-acting regulatory

elements are the microRNA (miRNA) target sites that

are present in the 3¢ UTRs of many human genes.

miRNAs post-transcriptionally down-regulate gene

expression by binding to complementary sequences on

their cognate target mRNAs, thereby inducing either

mRNA degradation or translational repression. To

date, only one disease-associated 3¢ UTR variant (in

the SLITRK1 gene) has been reported to occur within

a bona fide miRNA binding site. By means of sequence

complementarity, we have performed the first system-

atic search for potential miRNA-target site mutations

within a set of 79 known disease-associated 3¢ UTR

variants. Since no variants were found that either dis-

rupted or created binding sites for known human

miRNAs, we surmise that miRNA-target site muta-

tions are not likely to represent a frequent cause of

human genetic disease.
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Abbreviations
LAS Left arm of the ‘spacer’ sequence between

the upstream core polyadenylation signal

and the pre-mRNA cleavage site

miRNA MicroRNA

UCPAS Upstream core polyadenylation signal

USS Upstream sequence between the

translational termination codon and the

UCPAS

3¢ UTR 3¢ Untranslated region

Introduction

The 3¢ untranslated regions (3¢ UTRs) of human

protein-coding genes play a pivotal role in the regula-

tion of mRNA 3¢ end formation, stability/degradation,

nuclear export, subcellular localisation and translation

and are thus particularly rich in cis-acting regulatory

elements (for recent reviews, see Chen et al. 2006a, b).

One recent addition to the already large repertoire of

cis-acting regulatory elements are the microRNA

N. Chuzhanova � D. N. Cooper
Institute of Medical Genetics, Cardiff University, Heath
Park, Cardiff CF14 4XN, UK

C. Férec � J.-M. Chen
INSERM, U613, 29220 Brest, France
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(miRNA) target sites that are present in the 3¢ UTRs

of many human genes (e.g. John et al. 2004; Kiriakidou

et al. 2004; Grun et al. 2005; Krek et al. 2005; Lewis

et al. 2005; Robins and Press 2005; Xie et al. 2005).

miRNAs are an abundant class of small (~22 nucleo-

tide) non-coding RNAs. Upon binding to their cognate

targets, they post-transcriptionally down-regulate gene

expression by inducing either mRNA degradation or

translational repression (for recent reviews, see Pillai

2005; Kim and Nam 2006; Valencia-Sanchez et al.

2006). To date, at least 800 distinct human miRNAs

(~3% of the total number of human genes) have been

identified (Bentwich et al. 2005) but many more

probably still remain to be discovered. These miRNAs

are each likely to be responsible for repressing the

expression of a large number of different target genes

(Lim et al. 2005).

The importance of miRNAs in gene regulation and

their potential significance in both cancer biology and

gene evolution (Farh et al. 2005; Lim et al. 2005; Zhang

et al. 2006) suggests that mutations in miRNA-target

sites might well also be important in the aetiology of

human inherited disease. Indeed, one such lesion has

recently been reported: a G fi A transition (absent in

4,296 control chromosomes), which replaces a G:U

wobble base-pair with an A:U Watson–Crick pairing in

a binding site for human miRNA hsa-miR-189 within

the 3¢ UTR of the Slit and Trk-like 1 gene (SLITRK1;

MIM# 609678), was identified in two unrelated patients

with Tourette’s syndrome and obsessive-compulsive

symptoms (Abelson et al. 2005; Fig. 1). In vitro func-

tional analysis demonstrated that, in the presence of

hsa-miR-189, the mutant allele gave rise to increased

repression of the reporter gene as compared with the

wild-type allele.

In this study, we have made a first attempt to iden-

tify further potential miRNA-binding site mutations by

systematically screening previously reported disease-

associated 3¢ UTR variants.

Materials and methods

Data source

Of the previously collected 3¢ UTR variants, only those

that occurred within the sub-region known as the USS

(upstream sequence between the translational termi-

nation codon and the UCPAS, upstream core poly-

adenylation signal) were included for analysis (Chen

et al. 2006a, b). The variants that occurred within the

UCPAS and LAS (left arm of the ‘spacer’ sequence

between the UCPAS and the pre-mRNA cleavage site)

of the 3¢ UTR were excluded from evaluation for two

reasons: (i) their number is very limited and (ii) almost

all of these variants are explicable in terms of well-

established pathological mechanisms.

Of the 83 previously identified USS variants, four

isolated examples (i.e. Group 5 in Chen et al. (2006b))

were excluded owing to their complex nature. Thus, a

total of 79 USS variants (viz. Groups 1–4 in Chen et al.

(2006b)) were studied here.

Search for miRNA-binding sites spanning the sites

of USS variants

Sequence spanning the 79 collated USS variants was

searched for all known miRNA binding sites with miR-

Base software (http://microrna.sanger.ac.uk/sequences/

search.shtml; Griffiths-Jones et al. 2006) using default

parameters. For each variant, both the wild-type 3¢UTR

Fig. 1 Complementarity of several pairs of wild-type and variant
alleles with different miRNAs. Watson–Crick base-pairs are
depicted by bars. Gaps (indicated by asterisks) were introduced
so as to maximise complementarity in the cases of HBB and
THPO. The single nucleotide substitutions that distinguish the
variant alleles from the wild-type alleles are highlighted in bold
and grey. The only known pathological mutation in an miRNA-
target site, a G > A transition in the 3¢ UTR of the SLITRK1
gene in two patients with Tourette’s syndrome (Abelson et al.
2005), is included for the sake of comparison
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sequence and its mutated counterpart, each of total

length ~50 bp flanking the site of mutation, were

screened for the presence of miRNA binding sites, with

all possible 25 bp fragments within these flanking se-

quences being examined sequentially.

Results and discussion

General considerations about miRNA target

prediction

Whereas miRNAs have emerged as a new class of

regulatory gene (reviewed in Alvarez-Garcia and

Miska 2005; Yang et al. 2005; Kim and Nam 2006;

Krutzfeldt et al. 2006), miRNA-target sites within the

3¢ UTRs of human protein-coding genes constitute a

new class of cis-acting regulatory elements. Although

the mechanism underlying miRNA-target site interac-

tions still remains to be elucidated, it is clear that the

initiation of target site recognition often relies on short

stretches (6–8 bp) of perfect (and consecutive)

Watson–Crick miRNA-mRNA complementarity; this

perfect match is typically located at the 5¢ end of the

miRNA (termed the ‘seed’ site; Lewis et al. 2003, 2005;

Bentwich 2005; Brennecke et al. 2005; Rajewsky 2006).

Secondary structure has also been employed to

predict miRNA targets in two recent studies (Robins

et al. 2005; Zhao et al. 2005). However, as opined by

Rajewsky (2006), ‘‘it is not yet clear if the proposed

algorithms help to improve specificity or sensitivity of

algorithms that do not take into account 3¢ UTR sec-

ondary structure’’. Rajewsky also raised two problems

related to secondary structure prediction viz. the

unreliability of the mfold program (Zuker et al. 2003)

in cases where input length exceeds a given limit, and

the question of whether the predicted secondary

structure can be extrapolated to the in vivo situation.

In this regard, it is pertinent to note that using ‘local’

rather than ‘global’ secondary structure prediction, we

identified consistent patterns of secondary structural

change that potentiated the discrimination of func-

tional USS variants from their non-functional coun-

terparts (Chen et al. 2006b). We should however

emphasise that these predictions were made in the

context of interactions between mRNAs and their

cognate trans-acting proteins. Trans-acting RNA

molecules may well bind/influence a given mRNA

secondary structure in rather different ways than

trans-acting proteins. Further, the free energy of the

miRNA/mRNA duplex, which has often been evalu-

ated alongside sequence complementarity, has been

found to be a poor predictor of miRNA-target sites

(Rajewsky and Socci 2004; Rajewsky 2006).

Consequently, in seeking potential miRNA-target

site mutations amongst the 79 known 3¢ UTR variants

(Chen et al. 2006a, b), we relied entirely upon the

criterion of sequence complementarity at the ‘seed’

site. Under stringent conditions viz. the requirement of

at least a 7-nt consecutive match to the first eight

nucleotides at the 5¢ end of the miRNA (Bentwich

2005; Brennecke et al. 2005), none of the analysed USS

variants were found to disrupt or create binding sites

for known human miRNAs. However, under more

relaxed conditions, viz. the requirement of at least a

5-nt consecutive match to the ‘seed’ region of the

miRNA, four such cases were found (Fig. 1). The

observed E-values for these ‘hits’ were found to be >1

but <10 (default parameters); hence the formal prob-

abilities of finding these alignments by chance alone

were relatively high (HBB, 0.9257; DPYSL2, 0.2289;

THPO, 0.7759; PTGS2, 0.8891). The utility of such a

statistical analysis should probably not be overstated

since, in the case of the Tourette’s syndrome-associ-

ated mutation located within the hsa-miR-189-binding

site in the 3¢ UTR of the SLITRK1 gene (Abelson

et al. 2005), we calculate that the corresponding

P-value for finding this sequence similarity by chance

alone is 0.8647.

The secondary structural changes associated with these

four variants have been previously predicted by Chen

et al. (2006b). Although one (DPYSL2), which also had

the lowest P-value (0.2289) of the four candidate muta-

tions, was predicted to generate a type 1 secondary

structural change with unknown functional significance,

the remaining three [as well as the G fi A mutation in

the SLITRK1 gene (Abelson et al. 2005)] were predicted

to generate a pattern I secondary structural change (Chen

et al. 2006b). It is nevertheless impossible to draw any firm

conclusions at this stage. The four variants in question

(Fig. 1) will therefore now be discussed individually in the

context of their putative disease-associations and poten-

tial biological significance.

HBB: Predicted functional consequence

inconsistent with the presumed causative role

The C>G mutation, 6 nucleotides downstream of the

translational termination codon of the HBB gene

(MIM# 141900; encoding b-globin), was reported in

b-thalassaemia intermedia patients (Jankovic et al.

1991; Maragoudaki et al. 1998). The mutant G allele

displays decreased complementarity to miRNA hsa-

miR-214 as compared with the wild-type C allele

Genomic Med (2007) 1:29–33 31

123



(Fig. 1). Thus, it might be predicted that the mRNA

product of the HBB G allele would be less subject to

miRNA-mediated gene repression. Were this to be

true, the HBB G variant allele might be expected to be

associated with increased expression of the gene as

compared with the wild-type C allele; this would

however be inconsistent with the variant’s putative role

in causing b-thalassaemia intermedia. This notwith-

standing, it still remains possible that the variant G

allele constitutes a miRNA target mutation. However,

in this case, any ensuing functional consequences

would have been concealed by a concomitant effect on

mRNA stability, an effect already demonstrated by in

vitro functional analysis (Sgourou et al. 2002).

DPYSL2: Predicted functional consequence

partially consistent with the presumed causative

role

The 2236T>C polymorphism in the 3¢ UTR of the

dihydropyrimidinase-like 2 gene (DPYSL2; MIM#

602463) was reported to reduce the susceptibility to

schizophrenia in a Japanese patient sample (Nakata

et al. 2003). Based upon the observation that the

expression of DPYSL2 is significantly decreased in the

frontal cortex of people with schizophrenia and affec-

tive disorder (Johnston-Wilson et al. 2000), were the C

allele to be ‘disease-protective’, it might reasonably be

expected to give rise to increased expression of the

gene. This would contrast with the prediction that the

C allele should be more subject to translational

repression by hsa-miR-302b than the T allele (Fig. 1).

However, in a North American Caucasian population,

the C allele has been reported to increase susceptibility

to schizophrenia (Hong et al. 2005). If this later finding

were not simply spurious, the predicted functional

consequence of the T>C polymorphism would be

consistent with its presumed causative role.

THPO and PTGS2: Predicted functional

consequences consistent with presumed causative

roles

If the rs6141(+24)G>A polymorphism in the THPO

gene were indeed to be associated with a low platelet

count (Garner et al. 2005), it should result in the

increased expression of the gene because circulating

plasma levels of THPO are generally inversely corre-

lated with platelet levels (Garner et al. 2005 and ref-

erences therein). If the 9850A>G polymorphism in the

PTGS2 gene were indeed to confer colorectal cancer

risk (Cox et al. 2004), it should also lead to over-

expression of the gene (see Campa et al. 2004 for

relevant information). The reduced complementarity

of the THPO A variant allele to hsa-miR-431 and of

the PTGS2 G variant allele to hsa-miR-132, as com-

pared with their respective wild-type alleles (Fig. 1), is

therefore consistent with such functional conse-

quences.

Conclusions

We have taken a set of known disease-associated 3¢
UTR variants and performed the first systematic search

for potential miRNA-target site mutations. Under

fairly stringent conditions that required at least a 7-nt

consecutive match to the first eight nucleotides at the 5¢
end of the miRNA (Bentwich 2005; Brennecke et al.

2005), no variants were found that either disrupted or

created binding sites for known human miRNAs. The 3¢
UTR of the HBB gene, which displays a 6-nt consecu-

tive match with the seed region of hsa-miR-214, could

potentially serve as a functional miRNA target. How-

ever, not only does the C>G mutation not occur within

the seed region, but its predicted functional conse-

quence is also inconsistent with its presumed causative

role, making it unlikely to be biologically significant in

the context of miRNA-target interactions. As for the

remaining three variants, it appears unlikely that

5-mers would be sufficient to serve as seeds for the

initiation of miRNA-target site recognition. In sum-

mary, our analysis has suggested that miRNA-target

site mutations are not a frequent cause of human

genetic disease.
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Chen JM, Férec C, Cooper DN (2006a) A systematic analysis of
disease-associated variants in the 3¢ regulatory regions of
human protein-coding genes I: general principles and
overview. Hum Genet 120:1–21
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