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Abstract The coordinated and dynamic modulation or

interaction of genes or proteins acts as an important

mechanism used by a cell in functional regulation. Recent

studies have shown that many transcriptional networks

exhibit a scale-free topology and hierarchical modular

architecture. It has also been shown that transcriptional

networks or pathways are dynamic and behave only in

certain ways and controlled manners in response to disease

development, changing cellular conditions, and different

environmental factors. Moreover, evolutionarily conserved

and divergent transcriptional modules underline funda-

mental and species-specific molecular mechanisms con-

trolling disease development or cellular phenotypes.

Various computational algorithms have been developed to

explore transcriptional networks and modules from gene

expression data. In silico studies have also been made to

mimic the dynamic behavior of regulatory networks, ana-

lyzing how disease or cellular phenotypes arise from the

connectivity or networks of genes and their products. Here,

we review the recent development in computational biol-

ogy research on deciphering modular and dynamic

behaviors of transcriptional networks, highlighting impor-

tant findings. We also demonstrate how these computa-

tional algorithms can be applied in systems biology studies

as on disease, stem cells, and drug discovery.
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Abbreviations

NICA Nonlinear independent component analysis

PSMF Probabilistic sparse matrix factorization

CoD Coefficient of determination

ESC Embryonic stem cell

EB Embryoid body

Introduction

The coordinated and dynamic modulation or interaction of

genes or proteins acts as an important mechanism used by a

cell in functional regulation (Bar-Joseph et al. 2003; Hart-

well et al. 1999; Ideker et al. 2001; Segal et al. 2004). It has

been shown that many transcriptional networks exhibit a

scale-free topology and hierarchical modular architecture

(Barabasi and Bonabeau 2003; Ihmels et al. 2002; Jeong

et al. 2000; Ravasz et al. 2002; Resendis-Antonio et al.

2005; Stuart et al. 2003; Tanay et al. 2004; van Noort et al.

2004). That implies that the networks are dominated by a

few highly connected nodes (i.e., genes or proteins) which

link the rest of less connected nodes to the system. It also

implies that genes often closely interact with each other

forming transcriptional modules, some of which further

interact with each other forming larger modules, and this

process may continue on several different scales. Such a

hierarchical modular structure is exemplified by the yeast

transcriptional network, as shown in Fig. 1 (Tanay et al.

2004). In addition to the static properties, transcriptional

networks or pathways are also dynamic and behave only in
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certain ways and controlled manners in response to disease

development, changing cellular conditions, and different

environmental factors (Li and Zhan 2006; Luscombe et al.

2004; Nilsson et al. 2006; Qi and Ge 2006). The examina-

tion of the modular and dynamic behavior of genetic net-

works using microarray or other high-throughput data has

begun systems-level exploration of how disease or cellular

phenotypes arise from the connectivity or networks of genes

and their products (Imoto et al. 2003; Li et al. 2007b; Li and

Zhan 2006; Savoie et al. 2003; Sun et al. 2007). The study

is particularly promising for identifying diagnostic bio-

markers and drug targets, and for elucidating molecular

mechanism of disease or cell development (Imoto et al.

2003; Li and Zhan 2006; Savoie et al. 2003).

In this article, we review the recent development in

computational biology research on deciphering modular

and dynamic behaviors of transcriptional networks from

microarray data, highlighting important findings. We also

demonstrate how these computational algorithms can be

applied in systems biology studies as on disease, stem cells,

and drug discovery.

Identification of transcriptional modules

Computational identification of transcriptional modules

from microarray data has been conventionally conducted

using clustering-based methods, such as hierarchical clus-

tering, self-organizing maps, and k-means. Recently, dif-

ferent algorithms have been proposed to uncover

biologically more meaningful transcriptional modules

which may be featured with regulatory programs or hier-

archical and contextual modularity.

Segal et al. proposed a class of probabilistic graphical

models for inferring regulatory modules from gene

expression data (Segal et al. 2003). In this framework, a

regulatory module is a set of genes that are regulated in

concert by a shared regulatory program. The regulatory

program specifies the behavior of the genes in the module as

a function of the express levels of regulators. The method

allows identifying specific regulators for each module, their

effects, and the experimental conditions under which the

regulation occurs. Clearly, this approach relies on the

assumption that the expression levels of regulated genes

depend on the expression levels of regulators. The method

was demonstrated for its ability to generate detailed testable

hypotheses relating to both regulatory modules and their

control programs. The experimental results supported their

computationally generated results and suggested regulatory

roles for previously uncharacterized proteins.

Similarly, Bar-Joseph et al. described an algorithm that

uses gene expression data and transcription factor binding

data to discover transcriptional modules (Bar-Joseph et al.

2003). The algorithm performs an exhaustive search over

all possible combinations of transcription factors implied

by the transcription factor binding data. Once a set of genes

Fig. 1 Hierarchical and

modular organization of the

yeast transcriptional network.

Genes are clustered into

different modules. Some of the

modules (e.g., protein

biosynthesis) are organized in

more than two hierarchical

levels; large modules are

composed of several smaller

modules, giving a star-like

topology. (Reproduced from

(Tanay et al. 2004))
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bound by a common set of transcription factors is found,

the algorithm proceeds to find a smaller subset of genes

that are coexpressed. The algorithm then seeks to add

additional genes to the module that are similarly expressed

and assumingly bound by the same set of transcription

factors. The algorithm was applied to an analysis on yeast

expression data from over 500 experiments and 106 yeast

transcription factors profiled in rich medium conditions,

and shown to be efficient in accurately clustering genes and

regulators.

Zhou et al. introduced an approach, termed the second-

order expression analysis, for the identification of tran-

scriptional modules (Zhou et al. 2005). They defined the

first-order expression analysis as the extraction of expres-

sion patterns from one microarray data set. They then

proposed the second-order expression analysis as a study of

the correlated occurrence of expression patterns across

multiple data sets measured under different conditions. By

analyzing yeast microarray data, they demonstrated that the

second-order analysis could identify modules of genes with

the same function yet without clear coexpression patterns.

The approach could further reveal network relationships

among different transcriptional modules.

Barkai’s group presented a method to assign genes into

context-dependent and potentially overlapping regulatory

units (Ihmels et al. 2004). They defined the transcriptional

module as a self-consistent regulatory unit consisting of a

set of co-regulated genes as well as the experimental

conditions that induce their co-regulation, and proposed an

efficient iterative signature algorithm to identify such

modules. The proposed method is capable to reveal hier-

archical organization of transcriptional modules and cap-

turing overlapping modules in the presence of

combinatorial regulation. The transcription modules iden-

tified by this method shows a high biological coherence, as

measured by the conservation of putative cis-regulatory

motifs between four related yeast species, in comparison to

those by conventional methods.

A variety of matrix decomposition methods have been

introduced for uncovering transcriptional modules from

microarray data, including singular value decomposition

(Alter et al. 2000; Holter et al. 2001), independent com-

ponents analysis (Frigyesi et al. 2006; Lee and Batzoglou

2003; Liebermeister 2002), non-negative matrix factoriza-

tions (Brunet et al. 2004; Gao and Church 2005; Kim and

Tidor 2003; Lee and Seung 1999; Wang et al. 2006), net-

work component analysis (Liao et al. 2003), and probabi-

listic sparse matrix factorization (Dueck et al. 2005).

Recently, we presented a new matrix decomposition

method, ModulePro, for transcriptional module discovery

(Li et al. 2007b). The rationales behind our algorithm are:

a) there may be nonlinear structure in transcriptional pro-

files, particularly between transcription factors and their

target genes; and b) while many genes are involved in gene

regulation, only a small set of genes (e.g., transcription

factors or network hub genes) have predominant impact on

the expression patterns of most genes. The new method is

based on two-stage matrix decomposition on microarray

data, as illustrated in Fig. 2. First, a nonlinear independent

component analysis (NICA) is adopted to reduce the non-

linear distortion in the data and represent the data with

independent latent components. Second, a probabilistic

sparse matrix factorization (PSMF) approach is used to

model the ‘‘fake’’ expression profiles of genes across the

independent latent components as a linear weighted com-

bination of a small number of predominant prototypes that

represent the influence of different biological or experi-

mental factors (e.g., transcription factors or network hub

genes). The method treats microarray data as a mixture of

biological sources unknown or hidden, and takes into ac-

count the nonlinear structure existed in the data. The

method does not assume that genes with similar expression

profiles share the same pathway or similar functions. A

gene can be assigned to multiple modules if the gene has

multiple functions or is active in multiple biological

processes. In comparison with other approaches (e.g.,

Fig. 2 A two-stage matrix decomposition of a microarray data set X
(N genes and M samples) is obtained by ModulePro. The NICA

extracts nonlinear independent components (columns in �S) from X. At

the PSMF stage, �S is approximated by the product of sparse matrix Y

and low-rank Z. The values of all matrices are color coded by using a

color heatmap, from dark green (minimum) to dark red (maximum).

(Reproduced from (Li et al. 2007b))

Genomic Med. (2007) 1:19–28 21

123



hierarchical clustering, k-means, self-organizing maps,

probabilistic sparse matrix factorization, and independent

component analysis), the new method shows a higher

performance in identifying biologically meaningful tran-

scriptional modules (Li et al. 2007b).

Cross-species analysis is important for identifying evo-

lutionarily conserved and divergent transcriptional modules

(Bergmann et al. 2004; Ihmels et al. 2005; Stuart et al.

2003; Zhou and Gibson 2004). We implemented an R-

based program for the comparative analysis of transcrip-

tional modules from two microarray data sets of different

species (Zhan et al. unpublished). First, gene clustering is

performed using a method such as self-organizing maps, k-

means, or clustering analysis on the microarray data. The

clustering results from two different species are then

compared, and from the overlaps or non-overlaps of clus-

tering results between two species, conserved or divergent

transcriptional modules are identified. Using the program,

we examined transcriptional profiles of embryonic stem

cells (ESCs) and their earliest differentiated cells, embry-

oid bodies (EBs), from human and mouse (Sun et al.

unpublished). Figure 3 shows the analysis results on the

Oct4/Sox2/Nanog-directed network in ESCs and EBs. As

illustrated by the combined pair-wise correlation matrices

of gene expression in human and mouse (Fig. 3A), the

conserved modules (C1 and C2) showed overlapping gene

clustering between human and mouse, while the divergent

modules (D1 through D7) showed non-overlaps on the

gene clustering between the two species. As illustrated by

the heatmap of gene expression values (Fig. 3B), the

conserved module C1 showed elevated expression in ESCs,

while the conserved module C2 showed repressed expres-

sion in ESCs, in comparison to EBs in both human and

mouse. The conserved and divergent transcriptional mod-

ules underline fundamental and species-specific molecular

mechanisms regulating stem cell development (Sun et al.

unpublished).

Analysis of gene coexpression

Transcriptional modules are made up by coexpressed or co-

regulated genes. With recent interests in genetic networks

and modules, the study of gene coexpression has emerged

as a novel holistic approach for microarray data analysis

(Butte and Kohane 2000; Carter et al. 2004; Graeber and

Eisenberg 2001; Lee et al. 2004; Stuart et al. 2003; van

Noort et al. 2004). The coexpression of genes has been

conventionally measured using the Pearson’s correlation

coefficient (Graeber and Eisenberg 2001; Lee et al. 2004;

Stuart et al. 2003). The linear model-based correlation

coefficient provides a good first approximation of coex-

pression, but is also associated with certain pitfalls; it can

not provide evidence of directional relationship in which

one gene is upstream of another, and underestimates the

degree of coexpression if the relationship between genes is

Fig. 3 Results of cross-species transcriptional module analysis on the

Oct4/Sox2/Nanog-directed regulatory network in human and mouse

ESCs and EBs. (A) Heatmap presentation of the combined pair-wise

correlation matrices of gene expression profiles in mouse (upper

diagonal part) and human (lower diagonal part). Each column or row

represents a human–mouse orthologous gene. Each block on the

matrix presents the correlation level between the gene of the

corresponding column and the gene of the row. The more reddish

the color is, the more correlated the genes are on the expression

profiles. The white color indicates zero correlation. (B) Heatmap of

normalized gene expression values (red, over-expression in compar-

ison to the mean expression value; green, under-expression, black,

non change on the expression level). Each row represents an

orthologous gene, and the position of the genes is the same as that

on the row in the correlation matrix heatmap in A. The identified

transcriptional modules are labeled as C1 through D7

22 Genomic Med. (2007) 1:19–28

123



nonlinear (Herrgard et al. 2003; Imoto et al. 2002). Mutual

information is also used to measure gene coexpression

(Basso et al. 2005; Butte and Kohane 2000; Margolin et al.

2006; Zhou et al. 2003), but not suitable for modeling

directional relationships, either. The coefficient of deter-

mination (CoD), on the other hand, can measure how much

the combination of given genes (predictors) predicts the

behavior of the target gene by comparison to the absence of

the predictors, capable of uncovering nonlinear relationship

of coexpression and suggesting the directionality (Dough-

erty et al. 2000; Hashimoto et al. 2004; Kim et al. 2002;

Shmulevich et al. 2002a). Recently, we proposed a new

algorithm, CoexPro, which is based on B-spline approxi-

mation followed by CoD estimation (Li et al. 2007a). The

computation by the new algorithm requires no quantization

of microarray data, thus avoiding significant loss or mis-

representation of biological information, which would

otherwise occur in the conventional application of CoD

(Dougherty et al. 2000; Hashimoto et al. 2004). In com-

parison to correlation coefficient and CoD, the new algo-

rithm reveals gene coexpression with higher biological

relevance. Along with uncovering both linear and nonlinear

relationships of coexpression and suggesting the direc-

tionality, the new algorithm provides a more biologically

meaningful model for gene coexpression, particularly

useful in determining connectivity and inferring topology

in transcriptional network studies. We used CoexPro to

analyze coexpression of ligands and their corresponding

receptors in lung cancer, prostate cancer, leukemia, and

their normal tissue counterparts (Li et al. 2007a). As seen

in Table 1, the analysis revealed many ligand-receptor

pairs that showed different patterns of coexpression in

cancer and normal tissues. Between the ligand BMP7 and

its receptor ACVR2B, for example, CoD-B (the coex-

pression estimated by CoexPro) was 0.76 (P-value <0.028)

in lung cancer and 0.00 (P-value <0.58) in normal samples,

while R2 (correlation coefficient) was 0.042 in cancer and

0.0012 in normal samples. This pattern suggests a nonlin-

ear coexpression in lung cancer but no coexpression in

normal samples, and possibility of negative feedback reg-

ulation in BMP7 and ACVR2B expression. Between the

ligand CCL23 and its receptor CCR1, on the other hand,

CoD-B was 0.85 in the normal tissue while 0.00 in lung

cancer, and R2 was 0.91 in the normal tissue and 0.054 in

lung cancer. This pattern suggests a high linear coexpres-

sion in the normal lung tissue but no coexpression in

cancerous lung samples. Similarly, CCL23 and CCR1 were

also highly coexpressed in normal prostate samples (CoD-

B = 0.85) but not coexpressed in cancerous prostate sam-

ples (CoD-B = 0.0). However, CCL23 and CCR1 were not

coexpressed in both leukemia samples (CoD-B = 0.0) and

their normal tissue counterparts (CoD-B = 0.0). Thus,

CCL23 and CCR1 show differential coexpression not only

between cancerous and normal tissues, but also among

different cancers. The coexpression analysis using CoexPro

sheds new light to the understanding of cancer develop-

ment.

Coexpression networks or relevance networks can be

constructed by computing gene–gene association using

indices such as correlation coefficient, mutual information

from all genes in a microarray dataset (Basso et al. 2005;

Butte and Kohane 2000; Carter et al. 2004; Davidson

2001; Stuart et al. 2003). Basso et al. described a statis-

tical algorithm, ARACNE, for inferring pair-wise inter-

actions among genes and constructing coexpression

networks (Basso et al. 2005). ARACNE identifies statis-

tically significant gene–gene interactions by mutual

information and builds networks with the relationships

showing a high probability of representing either direct

regulatory interactions or interactions mediated by post-

transcriptional modifiers. Using ARACNE, a regulatory

network of human B-cells was recovered from the

expression profile data, showing a typical scale-free and

hierarchical architecture.

Zhang and Horvath presented a general framework for

constructing and analyzing gene coexpression networks

(Zhang and Horvath 2005). They proposed to use soft

thresholding techniques to convert the gene coexpression

similarity measure into the network connection strength

and construct a weighted network. The soft thresholding

is based the scale-free topology criterion that yields net-

works with high biological significance. They also dis-

tinguished intra-modular connectivity from whole network

connectivity and showed that the intra-modular connec-

tivity was more strongly correlated with functional sig-

nificance than the whole network connectivity. Using the

method, coexpression networks of human and chimpanzee

brains were constructed, from which transcriptional

modules were identified that correlated to the neuroana-

tomical structure of the brain (Oldham et al. 2006). Genes

with the highest intra-modular connectivity were shown to

be conserved between human and chimpanzee brains,

underscoring the shared molecular bases of primate brain

organization. Important differences in cerebral cortex

between human and chimpanzee coexpression networks

highlight the fact of rapid expansion of this brain region

on the human lineage. The results provide insights into

the molecular bases of primate brain organization and

demonstrate the general utility of gene coexpression net-

work analysis.

Exploring dynamics of transcriptional network

It is important to explore the dynamics of transcriptional

coexpression or networks in response to disease develop-

ment or changing cellular phenotypes. Various algorithms
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Table 1 List of ligand-receptor pairs which showed differential coexpression between cancers and normal tissue

Ligand Receptor CoD-B Pshuffle

Cancer Normal Cancer Normal

(A) Lung cancer

BMP7 ACVR2B 0.76 0.00 0.028 0.58

EFNA3 EPHA5 0.84 0.00 6.7E-06 0.69

FGF8 FGFR2 0.55 0.00 1.5E-07 0.66

IL16 CD4 0.62 0.031 2.7E-06 0.68

CCL23 CCR1 0.00 0.85 0.73 2.1E-09

IL1RN IL1R1 0.23 0.83 0.077 8.4E-07

IL18 IL18R1 0.18 0.71 0.097 4.5E-06

IL13 IL13RA2 0.00 0.69 0.62 1.5E-04

BMP5 BMPR2 0.00 0.61 0.69 1.7E-04

(B) Prostate cancer

BMP6 ACVR2B 0.63 0.081 0.0011 0.44

BTC EGFR 0.75 0.00 1.7E-11 0.28

TGFB2 TGFBR2 0.79 0.00 3.5E-04 0.49

INHA ACVR2A 0.59 0.019 1.1E-06 0.45

CCL23 CCR1 0.00 0.85 0.43 3.2E-09

IL1RN IL1R1 0.00 0.82 0.32 3.1E-07

TNFSF8 TNFRSF8 0.00 0.76 0.36 1.5E-06

IL18 IL18R1 0.00 0.70 0.39 2.1E-07

FIGF KDR 0.00 0.57 0.26 0.0023

CXCL5 IL8RB 0.00 0.58 0.41 1.1E-04

(C) Acute myeloid leukemia

FASLG FAS 0.90 0.14 3.6E-05 0.34

BMP7 BMPR1B 0.82 0.00 7.7E-04 0.59

EFNA5 EPHA1 0.85 0.00 2.5E-04 0.71

FGF3 FGFR2 0.81 0.00 7.4E-06 0.66

FGF13 FGFR4 0.75 0.059 0.0097 0.47

NRG1 ERBB3 0.95 0.00 1.7E-05 0.28

CCL4 CCBP2 0.99 0.24 9.6E-06 0.062

CCL7 CCR5 0.97 0.29 0.00476 0.41

IFNA8 IFNAR2 0.88 0.00 2.9E-05 0.70

IFNG IFNGR1 0.87 0.00 3.4E-04 0.68

IL13 IL4R 0.82 0.00 0.0041 0.70

INHBB ACVR2B 0.82 0.23 1.5E-04 0.11

AMH AMHR2 0.00 0.78 0.63 4.7E-05

CD40LG CD40 0.00 0.97 0.33 8.6E-05

TNFSF7 TNFRSF7 0.39 0.97 0.043 8.2E-05

EFNA1 EPHA4 0.065 0.86 0.59 1.6E-06

FGF1 FGFR4 0.00 0.93 0.32 1.6E-06

CXCL2 IL8RB 0.25 0.84 0.33 3.3E-06

FGF17 FGFR3 0.17 0.70 0.17 3.0E-04

DLK1 NOTCH4 0.00 0.89 0.55 2.5E-07

TNFSF4 TNFRSF4 0.00 0.92 0.67 3.3E-04

CXCL9 CXCR3 0.30 0.98 0.054 1.5E-04

TGFB1 TGFBR1 0.00 0.71 0.62 6.8E-05

(A) Lung cancer

(B) Prostate cancer

(C) Acute myeloid leukemia (AML)
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have been employed to explore the dynamics, including the

conditional Markov chain model (Kim et al. 2002; Li and

Zhan 2006), probabilistic Boolean network (Shmulevich

et al. 2002b), liquid association model (Li et al. 2004), and

a genomic scale approach for network dynamics analysis

(Luscombe et al. 2004).

Li et al. proposed a liquid association model for sys-

tematical analysis of coexpression dynamics (Li et al.

2004). The model detects the association of the transcrip-

tional increase or decrease of the gene Z with the increase

or decrease in the transcriptional correlation between the

genes X and Y. The model was used to reveal how the

enzymes associated with the urea cycle were expressed to

ensure a proper mass flow of the involved metabolites in

yeast, showing that the correlation between ARG2 and

CAR2 changed from positive to negative as the expression

level of CPA2 increased (Li et al. 2004).

Luscombe et al. developed an approach for a genomic

scale analysis of network dynamics (Luscombe et al.

2004). The approach combines well-known global topo-

logical measures, local motifs and newly derived statistics,

uncovering significant changes in the network architecture

that are unexpected from random simulation. An analysis

on yeast gene expression data using this approach resulted

in some interesting findings: a few transcription factors

served as permanent hubs of the transcriptional network,

whereas the most factors acted transiently only during

certain conditions (Luscombe et al. 2004), and environ-

mental responses facilitated fast signal propagation,

whereas the cell cycle and sporulation directed temporal

progression through multiple stages.

Recently, we developed an algorithm, PathwayPro, to

mimic the dynamic behavior of transcriptional networks

through a series of interventions made in silico on each

gene or gene combination (Li and Zhan 2006). The inputs

to the algorithm are experiment-specific regulatory net-

work information and gene expression data. The outputs

are the estimated probabilities of the behavior transition

of a network in instances such as disease development,

aging process, or cell differentiation. The algorithm can

provide answers to two questions: 1) whether or how

much a gene or external perturbation contributes to the

behavior transition of a network across different condi-

tions; 2) in what specific ways is this contribution man-

ifested. The PathwayPro analysis is particularly valuable

in its ability to in silico simulate the network behavior

which may not be easy to recreate in vitro, and generate

hypotheses for further in vitro investigation. The potential

clinical impact of such analysis is tremendous as it can

not only open up a window on the dynamic behavior of a

pathway or disease progression, but also translate into

accurate diagnosis, drug discovery, and effective pre-

ventive and therapeutic intervention of disease. We used

PathwayPro to examine the dynamic behavior of the

BCR-ABL pathway in response to the leukemia devel-

opment, and to identify possible disease and drug targets

of leukemia (Li and Zhan 2006). In this case study,

in silico transcriptional intervention was conducted on

each gene (referred to as single-gene intervention), each

combination of two genes (double-gene intervention), and

each combination of three genes (triple-gene intervention)

on this pathway. In each intervention, the observed

expression of a gene was altered to the opposite direction

or remained unchanged. The probability of the network

behavior transition between the normal condition and

leukemia state under each of the transcriptional inter-

ventions was calculated. The probability of the network

transition from normal to leukemia states suggests disease

susceptibility of the genes involved. The higher the

probability is, the more likely the gene or gene combi-

nation under a certain intervention is responsible for the

disease development. On the other hand, the probability

of the network transition from leukemia to normal states

suggests the potential usefulness of a drug or therapeutic

intervention. Table 2 lists parts of the analysis results. As

shown, more genes and gene combinations had higher

probabilities in the normal-to-leukemia network transition

than the leukemia-to-normal transition. This result sug-

gests that the chance is higher for human to develop

leukemia than to recover from the disease. It was also

showed that transcriptional interventions involving the

genes BCR and ABL yielded high probabilities for the

normal-to-leukemia transition and for the leukemia-to-

normal transition, no matter in single-, double- and triple-

gene interventions (Table 2). The result suggests that

BCR and ABL are the most contributive genes to the

network behavior transition between the normal condition

and the leukemia state, and therefore the most susceptible

for the development of leukemia as well as the recovery

of the disease to a normal condition. The two genes can

thus serve as good drug targets for the treatment of leu-

kemia. This result, reached independently by the com-

putational analysis, is in agreement with the conclusion

by previous laboratory-based studies (Zou and Calame

1999). It has been shown that chronic myeloid leukemia

(CML) is associated in most cases with the fusion of the

genes ABL and BCR, and the activation of BCR-ABL

represses apoptosis and allows transformed cells to divide,

resulting in the development of CML. The drug Gleevec

is a selective BCR-ABL inhibitor, effective in the treat-

ment of CML (Druker et al. 2001). In addition, the

PathwayPro analysis revealed that BAD and MYC played

critical roles in the leukemia development while AKT

appeared important in the leukemia recovery to a normal

condition, shedding new light on the understanding of the

leukemia disease.
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Table 2 Probabilities of the network behavior transition by serial interventions on the genes in the ABL-BCR pathway of human

Gene Transcriptional intervention Transition probability

(A) Transition from normal to CML states by single-gene interventiona

BCR 0�–1�1 0.00639

(B) Transition from CML to normal states by single-gene interventiona

ABL1 1�0�–1 0.000299

(C) Transition from the normal to CML states by double-gene interventionb

BCR ABL1 0 –1�1 1�1 1 0.0109

BCR BAD 0 1�–1 0�1 0 0.00639

BCR MYC 0 –1�–1 0�1 0 0.00639

BCR BAD 0 1�–1 –1�1 0 0.00639

BCR MYC 0 –1�–1 1�1 0 0.00639

BCR STAT5A 0 1�–1 –1�1 1 0.00639

BCR STAT5A 0 1�–1 0�1 1 0.00639

BCR STAT1 0 0�–1 1�1 0 0.00639

BCR STAT1 0 0�–1 –1�1 0 0.00639

BCR CRKL 0 –1�–1 1�1 0 0.00539

BCR CRKL 0 –1�–1 0�1 0 0.00399

BCR PIK3CG 0 –1�–1 0�1 –1 0.00384

BCR JAK2 0 0� –1 1�1 0 0.00224

BCR AKT1 0 0�–1 –1�1 0 0.00107

(D) Transition from the CML to normal states by double-gene interventionb

ABL1 AKT1 1 0�0 1�–1 0 0.00185

ABL1 AKT1 1 0�0 –1�–1 0 0.00179

BCR ABL1 1 1�0 –1�0 –1 0.00111

(E) Transition from normal to CML states by triple-gene interventionc

BCR ABL1 BAD 0 –1 1�1 1 0�1 1 0 0.010936

BCR ABL1 MYC 0 –1 –1�1 1 0�1 1 0 0.010936

BCR ABL1 BAD 0 –1 1�1 1 –1�1 1 0 0.010933

BCR ABL1 MYC 0 –1 –1�1 1 1�1 1 0 0.010933

BCR ABL1 STAT5A 0 –1 1�1 1 0�1 1 1 0.010933

BCR ABL1 STAT5A 0 –1 1�1 1 –1�1 1 1 0.010933

BCR ABL1 STAT1 0 –1 0�1 1 –1�1 1 0 0.010933

BCR ABL1 STAT1 0 –1 0�1 1 1�1 1 0 0.010933

(F) Transition from CML to normal states by triple-gene interventiond

BCR ABL1 AKT1 1 1 0�0 –1 1�0 –1 0 0.00684

BCR ABL1 AKT1 1 1 0�0 –1 –1�0 –1 0 0.00662

ABL1 CRKL AKT1 1 0 0�0 –1 1�–1 –1 0 0.00297

ABL1 CRKL AKT1 1 0 0�0 –1 –1�–1 –1 0 0.00288

BCR ABL1 AKT1 1 1 0�–1 –1 1�0 –1 0 0.00274

BCR ABL1 AKT1 1 1 0�–1 –1 –1�0 –1 0 0.00265

ABL1 CRKL AKT1 1 0 0�0 1 1�–1 –1 0 0.00250

ABL1 CRKL AKT1 1 0 0�0 1 –1�–1 –1 0 0.00242

The gene expression profile of each state is presented as: initial state (e.g., normal state) � state after intervened � end state (e.g., disease state).

Transcriptional intervention is presented as: initial state (e.g., normal state) � state after intervened � end state (e.g., disease state). In each

state, expression levels of each gene are presented by ternary values
a Probability cutoff 1E-4
b Probability cutoff 1E-3
c Probability cutoff 1E-2
d Probability cutoff 2E-3
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Closing remarks

Systems biology is aimed at elucidating how genes interact

to each other to perform specific biological processes or

functions, and how disease or cellular phenotypes arise

from the connectivity or networks of genes and their

products. The utilization of high-throughput data generated

by microarray or other technologies provides scientists

with a first step towards systems-level analyses of tran-

scriptional networks, in particular their modular and dy-

namic behaviors. However, the current data quality and

coverage of high-throughput datasets impose various lim-

itations on the network studies. Recent studies suggest that

regulatory networks learned from gene expression data

alone can be considerably obscured by spurious interac-

tions when the number of observations is small (Husmeier

2003). Integrating findings from multiple data sources (e.g.,

DNA sequences, gene and protein expression profiles,

protein–protein interactions, protein structural information,

and protein-DNA binding data) can overcome this draw-

back. Several research groups demonstrate that the recov-

ery of transcriptional networks from multiple types of data

is more accurate than that from each data type alone (Bar-

Joseph et al. 2003; Bernard and Hartemink 2005; Li et al.

2006). By continuing multidisciplinary efforts on further

technological innovations in both data generation and

computational methodology, we are expecting for more

effective exploration of transcriptional networks and sys-

tems biology studies on disease, cell development, and

other biological phenomena.
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