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Abstract Single Nucleotide Polymorphisms (SNPs) are

being intensively studied to understand the biological basis

of complex traits and diseases. The Genetics of human

phenotype variation could be understood by knowing the

functions of SNPs. In this study using computational

methods, we analyzed the genetic variations that can alter

the expression and function of the CFTR gene responsible

candidate for causing cystic fibrosis. We applied an evo-

lutionary perspective to screen the SNPs using a sequence

homology-based SIFT tool, which suggested that 17

nsSNPs (44%) were found to be deleterious. The structure-

based approach PolyPhen server suggested that 26 nsSNPS

(66%) may disrupt protein function and structure. The

PupaSuite tool predicted the phenotypic effect of SNPs on

the structure and function of the affected protein. Structure

analysis was carried out with the major mutation that

occurred in the native protein coded by CFTR gene, and

which is at amino acid position F508C for nsSNP with id

(rs1800093). The amino acid residues in the native and

mutant modeled protein were further analyzed for solvent

accessibility, secondary structure and stabilizing residues

to check the stability of the proteins. The SNPs were fur-

ther subjected to iHAP analysis to identify htSNPs, and we

report potential candidates for future studies on CFTR

mutations.
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Introduction

Cystic fibrosis (CF) is one of the most common life-

threatening autosomal recessive diseases. It is a complex

multisystem disorder, caused by mutations of the gene

encoding for the cystic fibrosis transmembrane conduc-

tance regulator (CFTR), located on chromosome region

7q31. CFTR is made up of five domains: two membrane-

spanning domains (MSD1 and MSD2) that form the chlo-

ride ion channel, two nucleotide-binding domains (NBD1

and NBD2) that bind and hydrolyze ATP (adenosine tri-

phosphate), and a regulatory (R) domain. CFTR is

localized in the apical membrane of epithelial cells and

confers cAMP-activatable transport of chloride, bicarbon-

ate and glutathione (Gabriela et al. 2007). One study

reported that the basic defect in CF impairs apical per-

meability for the chloride ion, and is assessed in humans by

increased chloride concentrations in sweat (Gibson and

Cooke 1959). More recent studies report low chloride

conductance of upper airway epithelium (Schuler et al.

2004), and lower chloride secretory response of the intes-

tinal epithelium to secretagogues (De Jonge et al. 2004).

The major disease causing mutation of the cystic fibrosis

(CF) transmembrane conductance regulator (CFTR) pro-

tein occurs in the DNA sequence that codes for the first

nucleotide-binding domain (NBD1). Approximately 70%

of CF patients (Collins 1992) are homozygous for the F508

cftr and 90% carry at least one F508 cftr allele (compound

heterozygotes). People who are homozygous for delta F508

mutation tend to have the most severe symptoms of cystic

fibrosis due to critical loss of chloride ion transport.

Understanding the genomic differences in the human

population is one of the major challenges in the field of

current genomics research. The recent sequencing of the

human genome (Venter et al. 2001; Lander et al. 2001)
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together with the large number of SNPs present in the

human population (Sherry et al. 2001; Hinds et al. 2005;

The International Hapmap Consortium 2003) opens the

way for the development of a detailed understanding of the

mechanisms by which genetic variation results in pheno-

type variation. The most common type of genome variation

is single nucleotide polymorphisms (SNPs), which occur in

the genome by the substitution of one single base, and

account for 90% of all polymorphisms in the human gen-

ome (Sachidanandam et al. 2001). In addition, there are

many common one base insertion and deletion polymor-

phisms. There are now several databases with these

variations of SNPs, such as the human genome variation

database, HGVBase (Fredman et al. 2002) and the National

Center for Biotechnology Information (NCBI) database,

dbSNP (Smigielski et al. 2000). Among the various types

of SNPs, nonsynonymous SNPs (nsSNPs) are believed to

have the greatest impact on protein function because they

often lead to mutation of the encoded amino acids, which

can have a deleterious effect on the structure and/or func-

tion of the proteins (Chasman and Adams 2001; Dryja

et al. 1990; Smith et al. 1994). Recent studies show that

SNPs may have functional effects on transcriptional regu-

lation, by affecting transcription factor binding sites in

promoter or intronic enhancer regions (Prokunina and

Alarcn-Riquelme 2004; Prokunina et al. 2002), or alter-

natively splicing regulation by disrupting exonic splicing

enhancers or silencers (Cartegni and Krainer 2002).

Over the past few years, several studies have attempted

to predict the functional consequences of an nsSNP whe-

ther it is disease-related or neutral, based on sequence

information and structural attributes (Richard et al. 2006).

Currently, most of the diseases represented by the genes in

the databases like OMIM, HGMD, and Swiss-Prot segre-

gate in a Mendelian manner, which suggests that they are

caused by single deleterious lesions.

Computational tools like SIFT and PolyPhen are able to

predict 90% of damaging SNPs. These prediction methods

can help us to narrow down candidate nsSNPs to identify

the causative lesion within a large genomic region impli-

cated in disease by linkage studies (Ng and Henokoff

2006). Several groups have tried to evaluate the deleterious

nsSNPs based on 3-dimensional (3D) structure information

of proteins by in-silico analysis. Karchin et al. considered

that the strongest predicting signals in the lac repressor/

lysozyme set were solvent accessibility and superfamily-

level evolutionary conservation (Karchin et al. 2005a, b).

Sunyaev et al. and Chen et al. also indicated that the res-

idue solvent accessibility, which could identify the buried

residues, was confidently proposed as predictors of dele-

terious substitutions (Sunyaev et al. 2001; Chen et al.

2005). However, the theoretical prediction methods for

deleterious nsSNPs are still in their infancy because the 3D

structural information of most proteins is not yet available

(Bao and Cui 2006; Wagner et al. 2005; Nguyen 2006).

Therefore, it is an inevitable trend to predict the deleterious

variations in proteins using sequence-based and position-

specific evolutionary information (Sunyaev et al. 2001;

Saunders and Baker 2002; Balasubramanian et al. 2005).

As a next step in the study of genetic variation, current

interest is focused on disease-gene association, that is,

identifying which DNA variation or set of DNA variations

is highly associated with a specific disease. Recently,

haplotype analysis has been successfully applied to the

identification of the DNA variations relevant to several

common and complex diseases and is now considered the

most promising method for studying complex disease-gene

association (Stumpf 2004).

Deleterious nsSNPs analyses for the CFTR gene have not

been estimated computationally until now, although they

have been the focus for experimental researchers. There-

fore, in this work, the computational algorithms namely

SIFT, PolyPhen, PupaSuite, FASTSNP, ASA View, DSSP

and SRide were used to identify the deleterious nsSNPs that

are likely to affect the function and structure of the protein

and showed the htSNPs which are in the haplotype blocks

using iHAP analysis. Based on SIFT and PolyPhen, we

identified the possible mutation, proposed a modeled

structure for the mutant proteins and compared this with the

native protein in the 3-D modeled structure of the CFTR

gene. We further analyzed native and mutant modeled

proteins for solvent accessibility, secondary structure

analysis and stabilizing residues. Our computational study

also demonstrates the presence of other deleterious muta-

tions in the CFTR gene that may affect the expression and

function of proteins with possible roles in Cystic fibrosis.

Moreover, our present study is well supported and docu-

mented by an in vivo experimental protocol in CFTR gene

(Tsui 1992; Ghanem et al.1994; Bienvenu et al. 1998).

Materials and methods

Datasets

The SNPs and their related protein sequence of CFTR gene

were retrieved from the Human genome variation database,

HGVBase (http://hgvbase.cgb.ki.se) and National Center

for Biotechnology Information (NCBI) database of SNPs,

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP) for

our computational analysis.

Functional analysis of coding nsSNPs by SIFT

Sorting Intolerant From Tolerant (SIFT) is a sequence

homology-based tool that sorts intolerant from tolerant
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amino acid substitutions and predicts whether an amino

acid substitution in a protein will have a phenotypic effect.

SIFT (Ng and Henikoff 2003) is based on the premise that

protein evolution is correlated with protein function. We

used SIFT to detect the deleterious coding non synonymous

SNPs and submitted the query in the form of either SNPids

or as protein sequences. SIFT analysis was performed by

allowing the algorithm to search for homologous sequences

(i.e., without inputting known homologs) and using the

default settings (SWISS-PROT 45 and TrEMBL 28 dat-

abases, median conservation score 3.00, remove sequences

[90% identical to query sequence). The underlying prin-

ciple of this program is that it generates alignments with a

large number of homologous sequences and assigns scores

to each residue, ranging from zero to one. Scores close to

zero indicate evolutionary conservation and intolerance to

substitution, while scores close to one indicate tolerance to

substitution. SIFT scores \0.05 are predicted by the algo-

rithm to be intolerant or deleterious amino acid

substitutions, whereas scores[0.05 are considered tolerant

(Ng and Henikoff 2001). The higher a tolerance index, the

less functional impact a particular amino acid substitution

is likely to have.

Simulation for functional change in coding nsSNPs

PolyPhen (Polymorphism Phenotyping) is an automatic

tool for prediction of possible impact of an amino acid

substitution on the structure and function of a human

protein available at http://coot.embl.de/PolyPhen/. This

prediction is based on straightforward empirical rules

which are applied to the sequence, phylogenetic and

structural information characterizing the substitution. Input

options for PolyPhen server (Ramensky et al. 2002) is

protein sequence or SWALL database ID or accession

number together with sequence position with two amino

acid variants. We submitted the query in the form of pro-

tein sequence with mutational position and two amino acid

variants. Basically, PolyPhen searches for 3D protein

structures, multiple alignments of homologous sequences

and amino acid contact information in several protein

structure databases, calculates position-specific indepen-

dent counts (PSIC) scores for each of two variants, and

then computes the PSIC scores difference of two variants.

The higher a PSIC score difference, the higher functional

impact a particular amino acid substitution is likely to

have. A PSIC score difference of 1.5 and above is con-

sidered to be damaging.

Analyzing the molecular phenotypic effects of SNPs

The SNPeffect (Reumers et al. 2006) and PupaSuite

(Conde et al. 2006) are now synchronized to deliver

annotations for both noncoding and coding SNP, as well as

annotations for the SwissProt set of human disease muta-

tions. In this approach, the input consists of a list of genes

(genes belonging to a given pathway, involved in a par-

ticular biological function, etc.) and the user must specify

the type of gene identifiers by selecting either Ensembl or

an external database (which include GenBank, Swissprot/

TrEMBL and other gene ids supported by Ensembl). Pu-

paSuite is a unique and more integrated interface of

PupaSNP (Conde et al. 2004) and PupasView (Conde et al.

2005) accessible at http://pupasuite.bioinfo.cipf.es and

through http://www.pupasnp.org. PupasView retrieves

SNPs that could affect conserved regions that the cellular

machinery uses for the correct processing of genes (intron/

exon boundaries or exonic splicing enhancers). It uses

algorithms like Tango (b-aggregation regions in protein

sequences) and FoldX (stability change caused by the

single amino acid variation) to predict the effect of coding

nonsynonymous SNPs on several phenotypic properties

such as structure and dynamics, functional sites and cel-

lular processing of human proteins using either sequence-

based or structural bioinformatics tools.

Functional significance of noncoding SNPs

in regulatory untranslated regions

Recent studies show that SNPs have functional effects on

protein structure by a single change in the amino acid

(Cargill et al. 1999; Sunyaev et al. 2000) and on tran-

scriptional regulation. We used the FastSNP (Yuan et al.

2006) for predicting the functional significance of the 50

and 30 UTRs of the CFTR gene and also to identify the

polymorphism involving the intron which may lead to

defects in RNA and mRNA processing. The FastSNP ser-

ver (http://fastsnp.ibms.sinica.edu.tw) follows the decision

tree principle with external web service access to

TFSearch, which predicts whether a noncoding SNP alters

the transcription factor-binding site of a gene. The score

will be given on the basis of levels of risk with a ranking of

0, 1, 2, 3, 4, or 5. This signifies the levels of no, very low,

low, medium, high, and very high effect, respectively.

Modeling nsSNP locations on protein structure

and their RMSD difference

Structure analysis was performed for evaluating the struc-

tural stability of native and mutant protein. We used the

web resource SAAPdb (Cavallo and Martin 2005) and

dbSNP to identify the protein coded by CFTR gene (PDB

id 1nbd). We also confirmed the mutation positions and the

mutation residues from this server. These mutation posi-

tions and residues were in complete agreement with the

results obtained with SIFT and PolyPhen programs. The
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mutation was performed using SWISSPDB viewer, and

energy minimization for 3D structures was performed

using NOMAD-Ref server (Lindahl et al. 2006). This ser-

ver use Gromacs as default forcefield for energy

minimization based on the methods of steepest descent,

conjugate gradient and L-BFGS methods (Delarue and

Dumas 2004). We used the conjugate gradient method for

optimizing the 3D structures. Deviation between the two

structures was evaluated by their RMSD values.

Computation analysis of solvent accessibility,

secondary structure and stabilizing residues

Solvent accessibility is the ratio between the solvent

accessible surface area of a residue in a three dimensional

structure and in an extended tripeptide conformation. We

obtained the solvent accessibility information using Net-

ASA view (Shander et al. 2004). The entire

implementation of ASA View for all PDB proteins, as a

whole or for an individual chain may be accessed at

http://www.netasa.org/asaview/. Requirements for the use

are simply the PDB code or the coordinate file. Solvent

accessibility was divided into three classes, buried, par-

tially buried and exposed indicating, respectively, low,

moderate and high accessibility of the amino acid residues

to the solvent (Gilis and Rooman 1996; Gilis and Rooman

1997). For a successful analysis of the relation between

amino acid sequence and protein structure, an unambigu-

ous and physically meaningful definition of secondary

structure is essential. We obtained the information about

secondary structures of the proteins using the program

DSSP (Kabsch and Sander 1983).

In order to check the stability for the native and mutant

modeled structures, identification of the stabilizing residues

will be useful. We used the server SRide (Magyar et al.

2005) for identifying the stabilizing residues in native

protein and mutant models. Stabilizing residues were

computed using parameters such as surrounding hydro-

phobicity, long-range order, stabilization center and

conservation score (Magyar et al. 2005).

Analysis of htSNPs

We used iHAP analysis (Song et al. 2006) to analyse

optimal subsets of SNPs, commonly known as ‘‘haplotype

tagging SNPs’’ (htSNPs), to capture most of the haplotype

diversity of each haplotype block or gene-specific region.

We submitted gene name, the iHAP resource determines

the chromosomal region of interest using the UCSC Gen-

ome Browser Database. The setup of the analysis job is

then defined according to parameters such as the HapMap

population, allele frequency threshold, block definitions,

tag SNP definitions, permutation test settings, as well as

SNPs to be ‘‘force included’’ as tags. We selected only

nsSNPs and SNPs in untranslated regions for iHAP anal-

ysis in three different populations namely CEU-CEPH

(northern and western Europe), JPH (Japanese) and CHB

(Chinese) respectively.

Results

SNP dataset

We selected (i) nonsynonymous coding SNPs (ii) 50 and 30

UTR region SNPs (iii) introns for our investigation. Out of

764 SNPs, 39 were nonsynonymous SNPs (nsSNPs) and 39

SNPs in coding synonymous region. Noncoding region is

comprised of 2 SNPs in 50 UTR region, 7 SNPs in 30 UTR

region and 677 SNPs were in the intronic region. Further it

was observed that the number of nsSNPs in the coding

region is much higher compared to the SNPs in the 50and 30

untranslated regions.

Deleterious nsSNP by SIFT program

SIFT predicts the functional importance of amino acid

substitutions based on the alignment of orthologous and/or

paralogous protein sequences. The protein sequences of 39

nsSNPs were submitted independently to the SIFT program

to check its tolerance index. Among the 39 nsSNPs, 17

nsSNPs (44%) were identified to be deleterious with a

tolerance index score of =0.05 as shown in Table 1. SIFT

scores were classified as intolerant (0.00–0.05), potentially

intolerant (0.051–0.10), borderline (0.101–0.20), or toler-

ant (0.201–1.00) according to the classification proposed

by Ng et al. and Xi et al. The higher the tolerance index,

the less functional impact a particular amino acid substi-

tution is likely to have, and vice versa. 4 nsSNPs with ids

(rs1800092, rs1800093, rs1800120 and rs4148725) showed

a highly deleterious tolerance index score of 0.00 and could

affect the protein function in the CFTR gene.

Damaged nsSNP by PolyPhen server

The structural levels of alteration were determined by

applying the PolyPhen program. It predicts the functional

effect of amino acid changes by considering evolutionary

conservation, the physiochemical differences, and the

proximity of the substitution to predicted functional

domains and/or structural features. All the 39 protein

sequences of nsSNPs submitted to SIFT were also sub-

mitted as input to the PolyPhen server. 26 nsSNPs (66%)

listed in Table 1 were considered to be damaging and

exhibited a range of PSIC score difference between 1.52

and 3.03. 5 nsSNPs with ids (rs1800074, rs1800093,
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rs1800100, rs36210737 and rs4148725) with a PSIC score

greater than 2.5 may have an affect on the tertiary structure

of proteins and their functionality. 17 nsSNPs that were

observed to be deleterious by the SIFT program also were

damaging according to PolyPhen. To date, data on the

validity of these algorithms has come from benchmarking

studies based on the analysis of ‘‘known’’ deleterious

substitutions annotated in databases, such as SwissProt,

shown to successfully predict the effect of over 80% of

amino acid substitutions (Savas et al. 2004; Sunyaev et al.

2000; Xi et al. 2004; Ng and Henikoff 2002). Experimental

studies of individual proteins have also confirmed the

accuracy of SIFT (Brooks-Wilson et al. 2004; Zhang

et al.2004; Kanetsky et al. 2004). Hence, we could infer

that the results obtained by the evolutionary-based

approach (SIFT) correlated well with the results obtained

by structural-based approach (PolyPhen), as can be seen

from Table 1. The nsSNP with an id (rs1800093) showed a

SIFT tolerance index of 0.00 and PSIC score difference 3.0

at position F508C and was selected for modeling analysis.

Predictions of potential phenotypic effect in SNPs

The effect of nonsynonymous coding SNPs can be ana-

lyzed by means of the physico-chemical properties of the

affected proteins. Pupasuite tries to pinpoint the exact

effect of a mutation to a specific structural or physico-

chemical property, ranging from protein aggregation to the

disruption of protein-protein interactions, or from changes

in protein turnover rate to subcellular (mis) localisation. In-

silico methods provide a useful tool for an initial approach

to any mutation suspected of causing aberrant RNA pro-

cessing. These mutations can result in either complete

skipping of the exon, retention of the intron or the intro-

duction of a new splice site within an exon or intron. In rare

cases, mutations that do not disrupt or create a splice site,

activate preexisting pseudo splice sites consistent with the

proposal that introns contain splicing inhibitory sequences

(Baralle 2005). Nonsense and missense mutations can

disrupt exonic splicing enhancers (ESEs) and cause the

splicing machinery to skip the mutant exon, with dramatic

effects on the structure of the gene product (Cartegni et al.

2002). ESEs are common in alternative and constitutive

exons, where they act as binding sites for Ser/Arg-rich

proteins (SR proteins), a family of conserved splicing

factors that participate in multiple steps of the splicing

pathway (Graveley 2000). ESSs are sequence elements that

are known to regulate alternative splicing and also play a

role in splice site selection (Fairbrother and Chasin 2000).

Out of 39 nsSNPs, 16 nsSNPs disrupted the exonic splicing

enhancers, 3 SNPs in mRNA disrupted the exonic splicing

enhancers, 3 nsSNPs disrupted the exonic splicing silenc-

ers, 6 nsSNPs (Pathological SNPs) were involved in

cellular processing, 5 nsSNPs were involved in protein

structure and dynamics and 3 nsSNPs were involved in

functional sites as depicted in Table 2. Varied levels of

alternative splicing have been detected for some of the

splicing mutations in CFTR gene (Aznarez et al. 2003;

Baralle 2005). The nsSNPs which were predicted to be

Table 1 List of nsSNPs that were predicted to be deleterious by SIFT

and PolyPhen

SNPs ID Alleles AA

change

Tolerance

index

PSIC

rs1800072 G/A V11C 1.00 0.150

rs1800073 C/T R31C 0.18 2.288

rs1800074 A/T D44V 0.01 2.532

rs1800076 G/A R75Q 0.03 1.754

rs1800078 T/C L138P 0.01 2.192

rs35516286 T/C I148T 0.41 1.743

rs1800079 G/A R170H 0.05 1.968

rs1800080 A/G S182G 0.03 1.699

rs1800086 C/G T351S 0.30 1.600

rs1800087 A/C Q353H 0.03 2.093

rs4727853 C/A N417K 1.00 0.015

rs11531593 C/A F433L 0.65 0.694

rs1800089 C/T L467F 0.15 1.568

rs213950 G/A V470M 0.17 1.432

rs1800092 C/A/G I506M 0.00 1.574

rs1801178 A/G I507V 0.38 0.314

rs1800093 T/G F508C 0.00 3.031

rs35032490 A/G K532E 1.00 1.525

rs1800097 G/A V562I 0.13 0.345

rs41290377 G/C G576A 0.33 1.262

rs766874 C/T S605F 0.03 2.147

rs1800099 A/G S654G 0.03 1.611

rs1800100 C/T R668C 0.01 2.654

rs1800101 T/C F693L 0.61 0.895

rs1800103 A/G I807M 0.01 1.554

rs1800106 T/C Y903H 0.52 0.183

rs1800107 G/T S909I 0.10 1.624

rs1800110 T/C L967S 0.07 1.683

rs1800111 G/C L997F 0.24 1.000

rs1800112 T/C I1027T 0.03 1.860

rs1800114 C/T A1067V 0.04 1.542

rs36210737 T/A M1101K 0.05 2.637

rs35813506 G/A R1102K 0.52 1.589

rs1800120 G/T R1162L 0.00 2.038

rs1800123 C/T T1220I 0.22 0.059

rs34911792 T/G S1235R 0.45 1.483

rs11971167 G/A D1270N 0.12 1.739

rs4148725 C/T R1453W 0.00 2.513

Highly deleterious by SIFT and damaging by PolyPhen are indicated

as bold
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deleterious in causing an effect in the structure and func-

tion of the protein by SIFT, PolyPhen and Pupasuite

correlated well with experimental studies (Tsui 1992;

Ghanem et al. 1994; Bienvenu et al. 1998) (Table 3).

Functional SNPs in noncoding SNPs

Polymorphism in the 30UTR region affects the gene

expression by affecting the ribosomal translation of

mRNA or by influencing the RNA half-life (Deventer

2000). The 50 and 30 UTRs are involved in various bio-

logical processes such as posttranscriptional regulatory

pathways, stability, and translational efficiency (Sonen-

berg 1994; Nowak 1994). We found that out of 8 UTR

SNPs, 1 SNPs in 30and another in 50UTR region with ids

rs34255446 and rs1800070, respectively were predicted

to be damaging by FAST SNP server as depicted in

Table 3.

Table 2 List of nsSNPs that

were predicted to be of

functional significance by

PupaSuite

SNPs ID Alleles Region Functional significance

rs1800072 A/G Coding nonsynonymous Cellular processing

rs35516286 C/T Coding nonsynonymous Cellular processing

rs1800080 A/G Coding nonsynonymous Cellular processing

rs34911792 G/T Coding nonsynonymous Cellular processing

rs1800092 A/C/G Coding nonsynonymous Prot.structure and

dynamics

Functional Sites

rs1800093 G/T Coding nonsynonymous Prot.structure and

dynamics

rs35813506 A/G Coding nonsynonymous Prot.structure and

dynamics

rs1801178 C/T Coding nonsynonymous Prot.structure and

dynamics

rs11531593 A/C Coding nonsynonymous Prot.structure and

dynamics

rs1800112 C/T Coding nonsynonymous Functional Sites

rs766874 A/G Coding nonsynonymous Cellular processing

Functional Sites

Exonic splicing enhancers

rs1800073 C/T Coding nonsynonymous Exonic splicing enhancers

rs1800074 A/T Coding nonsynonymous Exonic splicing enhancers

rs1800078 C/T Coding nonsynonymous Exonic splicing enhancers

rs1800079 A/G Coding nonsynonymous Exonic splicing enhancers

rs1800086 C/G Coding nonsynonymous Exonic splicing enhancers

rs35032490 A/G Coding nonsynonymous Exonic splicing enhancers

rs1800097 A/G Coding nonsynonymous Exonic splicing enhancers

rs1800100 C/T Coding nonsynonymous Exonic splicing enhancers

rs1800103 A/G Coding nonsynonymous Exonic splicing enhancers

rs1800107 G/T Coding nonsynonymous Exonic splicing enhancers

rs1800110 C/T Coding nonsynonymous Exonic splicing enhancers

rs1800120 G/T Coding nonsynonymous Exonic splicing enhancers

rs1800123 C/T Coding nonsynonymous Exonic splicing enhancers

rs11971167 A/G Coding nonsynonymous Exonic splicing enhancers

rs4148725 C/T Coding nonsynonymous Exonic splicing enhancers

s1800501 C/G mRNA Exonic splicing enhancers

rs1042166 A/T mRNA Exonic splicing enhancers

rs1800501 C/G mRNA Exonic splicing enhancers

rs1800080 A/G Coding nonsynonymous Cellular processing

Exonic splicing silencers

rs1800099 A/G Coding nonsynonymous Exonic splicing silencers

rs1800101 C/T Coding nonsynonymous Exonic splicing silencers

28 Genomic Med. (2008) 2:23–32
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Modeling and analysis of mutant structure

Single amino acid mutations can significantly change the

stability of a protein structure. So, the knowledge of a

protein’s three-dimensional (3D) structure is essential for a

full understanding of its functionality. Mapping the dele-

terious nsSNPs into protein structure information was

obtained from dbSNP and SAAPdb. The available structure

for the CFTR gene is reported to have a PDB id (1nbd).

Mutation analysis for the CFTR gene was performed based

on the results obtained from highest SIFT and PolyPhen

scores. It is noted that rs1800093 showed the highest del-

eterious (SIFT) and damaging (PolyPhen) scores, 0.00 and

3.031, respectively. According to this, the mutation

occurred for native protein (1nbd) at position F508C with

an SNP id namely (rs1800093), based on SIFT and Poly-

Phen results. The mutation for 1nbd at the corresponding

position was performed by SWISS-PDB viewer indepen-

dently to achieve modeled structures. Then, energy

minimizations were performed by NOMAD-Ref server for

the native type protein (1nbd) and the mutant type struc-

tures. It can be seen that total energy for the native (1nbd)

and mutant type structure F508C were found to be -

9786.37 and -9902.49 Kcal/mol respectively. RMSD

values between the native amino acid phenylalanine and

mutant amino acid cysteine at position 508 were found to

be 1.75 Å. The superimposed structures of the native

(1nbd) with mutant type protein F508C are shown in

Figs. 1 and 2, respectively.

The prediction of residue solvent accessibility can help

in better understanding the relationship between sequence

and structure. Solvent accessibility of all the residues in the

native protein and mutant proteins were computed with

NetASA. It is interesting to note that the residues Ser (434),

Tyr (512) and Ser (557) showed a change in solvent

accessibility from a buried to exposed state and Ala (566)

from an exposed to buried state in the mutant protein

F508C. The native amino acid phenylalanine and mutant

amino acid cysteine are hydrophobic in nature. Many

studies have suggested that hydrophobic core residues are

likely sites of deleterious mutations. Hence, change in

solvent accessibility from an exposed to buried state could

be considered functionally significant in the mutant protein

at structural level (Chen and Zhou 2005). The occurrence

of weak interactions has been observed at the terminus of

the secondary structural units, in particular a-helix and

b-sheets (Fabiola et al. 1997; Babu et al. 2002). These

interactions play a definitive role in stabilizing these

structures of proteins. The propensity of the amino acid

residues to favor a particular conformation has been well

documented. Such conformational preference is not

Table 3 List of SNPs (UTR mRNA) predicted to be functionally significant by FastSNP

SNPs ID Alleles UTR Position Level of risk Possible function effect

rs34255446 A/C 30 UTR Medium–High (3–4) Splicing site

rs1800070 A/G 50 UTR Low–Medium (1–3) Promoter/regulat ory region

Fig. 1 Structure of native protein 1nbd (grey) of CFTR gene

Fig. 2 Superimposed structure of native amino acid phenylalanine

(red) with mutant amino acid cysteine (grey) at 508 position in 1nbd
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dependent on the amino acid alone but is also dependent on

the local amino acid sequence. We analyzed the secondary

structure of each amino acid residue in the native and

mutant structures of the protein. We found that the residue

Met (498), Pro (499), Gly (500), Thr (507) and Leu (636)

changed from helix in the native protein to turn confor-

mation in the mutant protein.

SRide server was used for identifying the stabilizing

residues of native type and mutant modeled structure. We

obtained 12 amino acids which act as a stabilizing residue

in the native, as well as in the mutant structure. Of these,

ten residues were common in both the native and mutant

structure. Interestingly, on mutation at position F508C two

residues, namely Leu (453) and Cys (491), in the native

protein were replaced with the residues Glu (542) and Gly

(543), respectively. The change in the stabilizing residues

on mutation at 508 results in increased stability of the

mutant structure.

Identification of htSNPs

Sets of nearby SNPs on the same chromosome are inherited

in blocks. The minimal informative subsets of SNPs

associated with the limited number of haplotypes in a block

are often referred to as htSNPs. We analyzed htSNPs in the

coding region of CFTR gene by selecting the force tag-

SNPs selection in iHAP. We selected the htSNPs in

different populations based on the proportion of haplotype

diversity, haplotype entropy and minimax of pair wise LD

measure r2 between tag and untagged SNPs. Base on these

strategies we identified htSNPs in coding regions and

untranslated regions of CFTR gene with ids rs766784 and

rs1800100 in CEU-CEPH, and rs4148725 and rs1042180

in JPH and CHB populations, respectively. More specifi-

cally, tagSNPs chosen in one population are not

appropriate for genotyping in a different population (Ful-

lerton2004). Interestingly, the ids (rs766784, rs1800100

and rs4148725) were found to be deleterious and damaging

by SIFT and PolyPhen.

Discussion

Understanding the functional impacts of inherited varia-

tions between individuals is an important goal of human

genetics. Given that hundreds of thousands of SNPs are

estimated to exist in the human population, only a small

subset of variants that affect the phenotype will confer a

disease risk. Among these variations, nsSNPs that lead to

an amino acid change in the protein product are of par-

ticular interest for their close relevance to human inherited

diseases and drug sensitivity (Yue and Moult 2006; Wang

and Moult 2001). Therefore, the identification of nsSNPs

that affect protein function and relate to disease will be a

challenge in the coming years (Karchin et al. 2005a, b).

The effect of many nsSNPs will probably be neutral as

natural selection will have removed mutations on essential

positions. Assessment of nonneutral SNPs is mainly based

on phylogenetic information (i.e. correlation with residue

conservation) extended to a certain degree with structural

approaches (PolyPhen). However, there is increasing evi-

dence that many human disease genes are the result of

exonic or noncoding mutations affecting regulatory regions

(Hudson 2003; Yan et al. 2002). Much attention has been

focused on modeling by different methods the possible

phenotypic effect of SNPs that cause amino acid changes,

and only recently has interest focused on functional SNPs

affecting regulatory regions or the splicing process.

Out of 39 nsSNPs in the CFTR gene, 17 of them were

found to be deleterious (SIFT) and 26 of them found to be

damaging (PolyPhen). 30 nsSNPs and 3 SNPs in mRNA

region showed molecular phenotypic variation by Pu-

paSuite. 1 SNP in the 30 and another SNP in 50 UTR region

were found to be functionally significant by FASTSNP. We

mapped the deleterious mutation for (1nbd) at position

F508C with an SNP id (rs1800093) based on SIFT and

PolyPhen results. Structural significance of native and

mutant models of the CFTR gene at position F508C were

further investigated in this work by solvent accessibility,

secondary structure analysis and stabilizing residues. Sol-

vent accessibility, considered as a discriminating feature in

disease associated nsSNPs, tended to occur at buried sites;

benign substitutions tended to occur at solvent accessible

sites (Sunyaev et al. 2000; Ferrer-Costa 2002). Residues

that form the hydrophobic core of a protein are critical for

its stability. In the folded structure of a protein, polar and

charged side chains have higher solvent accessibility than

nonpolar side chains suggesting that formation of a

hydrophobic core is a strong driving force in protein

folding (Chan and Dill 1990). The mutation occurring at

position 508 in CFTR gene provides hydrophobic contacts

for domain–domain interactions that are crucial for the

post-translation folding mechanism of NBD2 (Du et al.

2005). We further analyzed the CFTR gene by haplotype

analysis and identified htSNPs. Our results from this study

suggests that the application of computational algorithms,

namely SIFT, PolyPhen, PupaSuite, FASTSNP, ASA view,

SRide and iHAP analysis might provide an alternative

approach to select target SNPs by understanding the effect

of SNPs on the functional attributes or molecular pheno-

type of a protein. The models built in this work would be

applicable for predicting the deleterious nsSNPs which

would be helpful for further genotype–phenotype research

as well as pharmacogenetics studies. The functional anal-

ysis in this study may be a good model for further research

in genetically inherited disease.

30 Genomic Med. (2008) 2:23–32
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Conclusion

Our results from this study suggest that the application of

computational tools including SIFT, PolyPhen, Pupasiute,

FASTSNP, ASA view, SRide and haplotype analysis might

provide an alternative approach to select target SNPs in

association studies. Our result also endorses a study with an

in vivo experimental protocol. Importantly, the applica-

tions of these computational algorithms in association

studies will greatly strengthen our understanding of the

inheritance of complex human phenotype. Therefore, our

analysis will provide useful information in selecting SNPs

that are likely to have potential functional impact and

ultimately contribute to an individual’s susceptibility to

cystic fibrosis by the CFTR gene.

Acknowledgments The authors thank the management of Vellore

Institute of Technology for providing the facilities to carry out this

work. The authors take this opportunity to thank the reviewers for

their invaluable comments and suggestions to make this manuscript

more readable and meaningful.

References

Aznarez I, Chan EM, Zielenski J et al (2003) Characterization of

disease-associated mutations affecting an exonic splicing

enhancer and two cryptic splice sites in exon 13 of the cystic

fibrosis transmembrane conductance regulator gene. Hum Mol

Genet 12(16):2031–2040

Babu MM, Singh KS, Balaram P et al (2002) C-H...O hydrogen bond

stabilized polypeptide chain reversal motif at the C terminus of

helices in proteins. J Mol Biol 322:871–880

Balasubramanian S, Xia Y, Freinkman E et al (2005) Sequence

variation in G- Protein-coupled receptors: analysis of single

nucleotide polymorphisms. Nucleic Acids Res 33:1710–1721

Bao L, Cui Y (2006) Functional impacts of non-synonymous single

nucleotide polymorphisms: selective constraint and structural

environments. FEBS Lett 580:1231–1234

Baralle D, Baralle M (2005) Splicing in action: assessing disease

causing sequence changes. J Med Genet 42:737–748

Bienvenu T, Bousquet S, Vidaud D et al (1998) A novel missense

mutation D513G in exon 10 of the cystic fibrosis transmembrane

conductance regulator (CFTR) gene identified in a French

CBAVD patient. Hum Mutat 12(3):213–214

Brooks-Wilson AR, Kaurah P, Suriano G (2004) Germline Ecadherin

mutations in hereditary diffuse gastric cancer: assessment of 42

new families and review of genetic screening criteria. J Med

Genet 41:508–517

Cargill M, Altshuler D, Ireland J et al (1999) Characterization of

single nucleotide polymorphisms in coding regions of human

genes. Nat Genet 22:231–238

Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent

exonic splicing enhancer in SMN2 causes spinal muscular

atrophy in the absence of SMN1. Nature Genet 30:377–384

Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and

understanding nonsense: exonic mutations that affect splicing.

Nat Rev Genet 3:285–298

Cavallo A, Martin AC (2005) Mapping SNPs to protein sequence and

structure data. Bioinformatics 8:1443–1450

Chasman D, Adams RM (2001) Predicting the functional conse-

quences of non-synonymous single nucleotide polymorphisms:

structure-based assessment of amino acid variation. J Mol Biol

307:683–706

Chan HS, Dill KA (1990) Origins of structure in globular proteins.

Proc Natl Acad Sci USA 87:6388–6392

Chen H, Zhou HX (2005) Prediction of solvent accessibility and sites

of deleterious mutations from protein sequence. Nucleic Acids

Res 33:3193–3199

Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic

implications. Science 256:774–779

Conde L, Vaquerizas MJ, Santoyo J et al (2004) PupaSNP Finder: a

web tool for finding SNPs with putative effect at transcriptional

level. Nucleic Acids Res 32:W242–W248

Conde L, Vaquerizas JM, Ferrer-Costa C et al (2005) PupasView: a

visual tool for selecting suitable SNPs, with putative patholog-

ical effect in genes, for genotyping purposes. Nucleic Acids Res

33:W501–W505

Conde L, Vaquerizas MJ, Dopazo H et al (2006) PupaSuite:

findingfunctional single nucleotide polymorphisms for large-

scale genotyping purposes. Nucleic Acids Res 34:W621–W625

De Jonge HR, Ballmann M, Veeze H et al (2004) Ex vivo CF

diagnosis by intestinal current measurements (ICM) in small

aperture, circulating Using chambers. J Cyst Fibros 3:159–163

Delarue M, Dumas P (2004) On the use of low-frequency normal

modes to enforce collective movements in refining macromo-

lecular structural models. Proc Natl Acad Sci 101:6957–6962

Deventer SV (2000) Cytokine and cytokine receptor polymorphisms

in infectious disease. Intensive Care Med 26:S98–S102

Dryja TP, Mcgee TL, Halu LB et al (1990) Mutations within the

rhodopsin gene in patients with autosomal dominant retinis

pigmentosa. N Engl J Med 323:1302–1307

Du K, Sharma M, Lukacs GL (2005) The F508 cystic fibrosis

mutation impairs domain-domain interactions and arrests post-

translational folding of CFTR. Nat Struct Mol Biol 12:17–25

Fabiola GF, Krishnaswamy S, Nagarajan V et al (1997) C-H O

Hydrogen bonds in bsheets. Acta Crystallogr D53:316–320

Fairbrother WG, Chasin LA (2000) Human genomic sequences that

inhibit splicing. Mol Cell Biol 20:6816–6825

Ferrer-Costa C, Orozco M, De la Cruz X (2002) Characterization of

disease-associated single acid polymorphisms in terms of

sequence and structure properties. J Mol Biol 315:771–786

Fredman D, Siegfried M, Yuan YP et al (2002) HGVbase: a human

sequence variation database emphasizing data quality and a

broad spectrum of data sources. Nucleic Acids Res 30(1):

387–391

Fullerton SM, Buchanan AV, Sonpar VA et al. (2004) The effects of

scale: variation in the APOA1/C3/A4/A5 gene cluster. Hum

Gene 115:36–56

Gabriela MR, Alonso RP, Iris D (2007) XV-2c and KM.19 haplotype

analysis in Chilean patients with cystic fibrosis and unknown

CFTR gene mutations. Biol Res 40:223–229

Ghanem N, Costes B, Girodon E et al (1994) Identification of eight

mutations and three sequence variations in the cystic fibrosis tran

membrane conductance regulator (CFTR) gene. Genomics

21:434–436

Gibson LE, Cooke RE (1959) A test for concentration of electrolytes

in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by

iontophoresis. Pediatrics 23:545–549

Gilis D, Rooman M (1996) Stability changes upon mutation of

solvent accessible residues in proteins evaluated by database

derived potentials. J Mol Biol 257:1112–1126

Gilis D, Rooman M (1997) Predicting protein stability changes upon

mutation using database-derived potentials: solvent accessibility

determines the importance of local versus non-local interactions

along the sequence. J Mol Biol 272:276–290

Genomic Med. (2008) 2:23–32 31

123



Graveley BR (2000) Sorting out the complexity of SR protein

functions. RNA 6:1197–1211

Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns

of common DNA variation in three human populations. Science

307:1072–1079

Hudson TJ (2003) Wanted: regulatory SNPs. Nat Genet 33:439–440

Kabsch W, Sander C (1983) Dictionary of protein secondary

structure: pattern recognition of hydrogen-bonded and geomet-

rical features. Biopolymers 22:2577–2637

Kanetsky PA, Ge F, Najarian D et al (2004) Assessment of

polymorphic variants in the melanocortin-1 receptor gene with

cutaneous pigmentation using an evolutionary approach. Cancer

Epidemiol Biomarkers Prev 13:808–819

Karchin R, Kelly L, Sali A (2005a) Improving functional annotation

of non-synonymous SNPs with information theory. Pac Symp

Biocomput 10:397–408

Karchin R, Diekhans M, Kelly L et al (2005b) LS-SNP: large-scale

annotation of coding nonsynonymous SNPs based on multiple

information sources. Bioinformatics 21(12):2814–2820

Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and

analysis of the human genome. Nature 409:860–921

Lindahl E, Azuara C, Koehl P et al (2006) NOMAD-Ref: visualiza-

tion, deformation and refinement of macromolecular structures

based on all-atom normal mode analysis. Nucleic Acids Res

34:W52–W56

Magyar C, Gromiha MM, Pujadas G et al (2005) SRide: a server for

identifying stabilizing residues in proteins. Nucleic Acids Res

33:W303–305

Ng PC, Henikoff S (2001) Predicting deleterious amino acid

substitutions. Genome Res 11:863–874

Ng PC, Henikoff S (2002) Accounting for human polymorphisms

predicted to affect protein. Genome Res 12:436–446

Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that

affect protein function. Nucl Acids Res 31:3812–3814

Ng PC, Henikoff S (2006) Predicting the effects of amino acid

substitutions on protein function. Annu Rev Genomics Hum

Genet 7:61–80

Nguyen MN, Rajapakse JC (2006) Two-stage support vector regres-

sion approach for predicting accessible surface areas of amino

acids. Proteins 63:542–550

Nowak R (1994) Mining treasures from ‘junk DNA’. Science

263:608–610

Prokunina L, Alarcon-Riquelme ME (2004) Regulatory SNPs in

complex diseases: their identification and functional validation.

Expert Rev Mol Med:1–15

Prokunina L, Castillejo-Lopez C, Oberg F et al (2002) A regulatory

polymorphism in PDCD1 is associated with susceptibility to

systemic lupus erythematosus in humans. Nat Genet 32:666–669

Ramensky V, Pork P, Sunyaev S (2002) Human non-synonymous

SNPs: server and survey. Nucleic Acids Res 30:3894–3900

Reumers J, Maurer-Stroh S, Schymkowitz J et al (2006) SNPeffect

v2.0: a new step in investigating the molecular phenotypic

effects of human non-synonymous SNPs. Bioinformatics

22(17):2183–2185

Richard JD, Patricia BM, Mark JC et al (2006) Predicting deleterious

nsSNPs: an analysis of sequence and structural attributes. BMC

Bioinformatics 7:217

SachidanandamR, Weissman D, Schmidt SC, Kakol JM, Stein LD,

Marth G, Sherry S, Mullikin JC, Mortimore BJ (2001) A map of

human genome sequence variation containing 1.42 million

single nucleotide polymorphisms. Nature 409:928–933

Saunders CT, Baker D (2002) Evaluation of structural and evolu-

tionary contributions to deleterious mutation prediction. J Mol

Biol 322:891–901

Savas S, Kim DY, Ahmad MF et al (2004) Identifying functional

genetic variants in DNA repair pathway using protein conser-

vation analysis. Cancer Epidemiol Biomarkers 13:801–807
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