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Abstract Genomic medicine research requires substantial

time and resources to obtain phenotype data. The electronic

health record offers potential efficiencies in addressing these

temporal and economic challenges, but few studies have

explored the feasibility of using such data for genetics

research. The main objective of this study was to determine

the association of two genetic variants located on chromo-

some 9p21 conferring susceptibility to coronary heart

disease and type 2 diabetes with a variety of clinical phe-

notypes derived from the electronic health record in a

population of morbidly obese patients. Data on more than

100 clinical measures including diagnoses, laboratory val-

ues, and medications were extracted from the electronic

health records of a total of 709 morbidly obese (body mass

index (BMI) C 40 kg/m2) patients. Two common single

nucleotide polymorphisms located at chromosome 9p21

recently linked to coronary heart disease and type 2 diabetes

(McPherson et al. Science 316:1488–1491, 2007; Saxena

et al. Science 316:1331–1336, 2007; Scott et al. Science

316:1341-1345, 2007) were genotyped to assess statistical

association with clinical phenotypes. Neither the type 2

diabetes variant nor the coronary heart disease variant was

related to any expected clinical phenotype, although high-

risk type 2 diabetes/coronary heart disease compound

genotypes were associated with several coronary heart dis-

ease phenotypes. Electronic health records may be efficient

sources of data for validation studies of genetic associations.
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record � Cardiovascular disease � Type 2 diabetes

Introduction

Genomic medicine research requires substantial resources

and time to assemble study populations, collect phenotypic

data and biological samples, and to address specific

research questions (Service et al. 2003). Moreover, the

need for large sample sizes (Eberle et al. 2007) and

increasingly precise definition of clinical phenotypes

(Cupples et al. 2007) to study complex disorders, such as

coronary heart disease (CHD) and type 2 diabetes (T2D),

exacerbates demands on increasingly scarce research

resources. Use of electronic health record (EHR) data on

patient populations seeking care in large integrated deliv-

ery systems offers one potential solution to mitigate these

challenges (Gerhard et al. in press).

Integrated delivery systems with EHRs offer several

significant advantages over traditional approaches to

genomic medicine research by simplifying logistics,

reducing time lines, and reducing the overall costs through

efficient data acquisition (Powell and Buchan 2005). Large

numbers of patients can be readily identified and pheno-

typed using the EHR. Clinical infrastructure can be used to

recruit patients, acquire biological samples (e.g., blood),

and obtain supplemental data. However, few previous

studies in genomic medicine research have used EHR data.

We examined the effectiveness of this model using

comprehensive EHR data and biological samples on

patients from the Geisinger Clinic Center for Nutrition and

Weight Management. We performed a validation study on

T2D and CHD genetic variants with a specific focus on

patients with morbid obesity (BMI C 40 kg/m2; Flegal
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et al. 2002). Few genetic studies of obesity-related disor-

ders, such as T2D and CHD, have been conducted with

morbidly obese populations (Koumanis et al. 2002). A

large clinical database was constructed using data extracted

from the EHR and evaluated through analysis of expected

clinical associations. Two single nucleotide polymor-

phisms (SNPs) located in the same region of chromosome

9p21 which has previously been associated with T2D

(Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007)

and CHD (Helgadottir et al. 2007; Larson et al. 2007;

McPherson et al. 2007; O’Donnell et al. 2007; Samani

et al. 2007) in genome wide association studies, were

genotyped and associations with clinical variables deter-

mined. The resources and timeline required for these

studies were considerably less than would have been

required by traditional approaches.

Materials and methods

Center for Nutrition and Weight Management

The Center is an integrated practice model for weight

management that seamlessly incorporates research as core

to the practice. All patients who were enrolled in the Ba-

riatric Surgery Program were recruited into a clinical

research program in obesity (Still et al. 2007). Patients

undergo a pre-operative assessment and preparation period

during which a comprehensive set of clinical and labora-

tory measures were obtained along with blood samples for

serum and DNA isolation. The Institutional Review Board

of the Geisinger Clinic approved the research protocol and

all participants provided written informed consent.

Patients

Patients from the Geisinger Clinic Center for Nutrition and

Weight Management’s Bariatric Surgery program were

recruited between October 2004 and August 2007. A

comprehensive medical history and physical examination

was performed during the initial visit. Standard of care

laboratory tests were obtained pre-operatively, most

approximately three weeks prior to surgery.

Biological samples

EDTA anti-coagulated blood samples for DNA isolation

were obtained for the study as part of a clinical blood draw.

For a small number of patients, blood was not obtained.

DNA was then isolated from preserved liver tissue that was

obtained from an intra-operative liver biopsy performed as

standard of care for the bariatric surgery.

EHR

Geisinger Health System is an integrated delivery system with

a significant presence in central and northeastern Pennsylva-

nia. Installation of an EHR (EpicCare) began in 1996 in the

current 40 community practice clinics and in specialty clinics

in two hospitals and was completed (i.e., completely paperless

operations) by 2001. The EHR is used for a variety of practice-

based tasks including viewing test results, clinical messaging,

dictation authorization, and order entry. Essentially all clinical

notes are recorded in the EHR along with clinical measures,

demographics, orders, diagnoses (based upon the Interna-

tional Classification of Diseases, Clinical Modification or

ICD-9 codes), and data from other sources, including digital

imaging and lab measures.

EHR data acquisition

Data were extracted from the EpicCare EHR (Verona, WI)

using imbedded routines (known as Clarity), provided by the

software vendor. Clarity tables can be manipulated using

standard queries in SQL (standardized query language)

applications. The Clarity tables containing the specific ele-

ments in the data dictionary for a particular domain (e.g.,

physical measurements, or lab measure) were identified, and

those fields were extracted into a text file. Typically, all

instances of an element were extracted (e.g., all lab results for

a specific analyte). The extracted file was read into SAS/

STAT software (SAS Institute Inc., Cary, NC).

Specific data elements from the EHR, summarized in

Table 1, were selected because of their potential relevance to

obesity and related complications, and their relative fre-

quency among the morbidly obese population. For example,

the co-morbidities (n = 25) and current medication sub-

classes (n = 67) extracted were found in at least 2% of the

cohort at the initial visit; data elements not present in at least

2% of the cohort were omitted from the study database. The

aggregate data obtained from the EHR were queried to

extract those specific values (Table 1 variables) that were

used to populate the study database. The resulting data file

was merged with genotype data using a medical record

number.

DNA isolation

DNA was extracted from 0.35 ml of EDTA anti-coagulated

whole blood using the Qiagen MagAttract DNA Blood

Midi M48 Kit and Qiagen BioRobot M48 Workstation

(Qiagen, Valencia, CA) according the manufacturer’s

directions. The final elution volume was 200 ll. For a small

number of patients, blood was not available so DNA was

extracted from fixed liver tissue. Liver was first treated

with proteinase K (1 lg/ll) in 350 ll Qiagen Tissue Lysis
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Buffer and incubated at 55�C overnight. Following diges-

tion, samples were loaded to Qiagen BioRobot M48

Workstation and extracted for DNA as described above for

blood samples. Quantification of DNA extracted was per-

formed using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, Wilmington, DE).

Table 1 Variables extracted from the EHR

Demographics Laboratory values

• Age at surgery • Date of initial visit • Triglycerides

• Gender • Date of surgery • High density lipoprotein cholesterol (HDL)

• Race • Length of stay • Low density lipoprotein cholesterol-calculated (LDL)

Clinical measurements • HbA1c

• Weight • BMI • Insulin

• Height • Waist circumference • Albumin

Diagnoses • Total Bilirubin

• Most common co-morbid conditions identified • Alkaline Phosphatase

• Hypertension • Disorder of back • Aspartate aminotransferase (AST)

• Diabetes • Hypoglycemia • Alanine aminotransferase (ALT)

• Hypercholesterolemia • Ovarian dysfunction • Protein

• General symptoms • Chronic IHD • Blood urea nitrogen (BUN)

• Depression • Allergic rhinitis • Creatinine

• Osteoarthrosis • Invertebral disc disorder • Sodium

• Hypothyroidism • Respiratory symptoms • Potassium

• Asthma • Neurotic disorders • Chloride

• Affective psychoses • Nondependent drug abuse • CO2

• Disorder of soft tissue • Adjustment reaction • Glucose

• Disease of esophagus • Migraine • Calcium

Medications • Glomerular filtration rate-estimated (GFR)

• Most common medication subclasses identified included • Thyroid stimulating hormone (TSH)

• SSRIsa • Biguanides • Iron

• NSAIDsb • Proton pump inhibitors • Iron binding capacity

• ACE Inhibitorsc • Statins • Transferrin

• Loop Diuretics • Salicylates • Ferritin

• Thyroid hormones • Sympathomimetics • White blood cell count

• Beta blockers • Opioid combinations • Red blood cell count

• Sulfonylureas • Insulin • Hemoglobin

• Thiazides • Insulin sensitizing agents • Hematocrit

• Antihistamines • Benzodiazepines • Mean cell volume (MCV)

• Antihypertensive combos • Nasal steroids • Mean cell hemoglobin (MCH)

• Chol absorption inhibitor • Multivitamins • Mean cell hemoglobin concentration (MCHC)

• Calcium channel blocker • Cough/Cold/Allergy combo • Platelet count

• Steroid inhalants • ARBse • Mean platelet volume (MPV)

• SNRIsd • Anticonvulsants • Red cell distribution width (RDW)

• Central muscle relaxants • H-2 Antagonistsf

• Nitrates • Fibric acid

• Anti-platelet aggregation • Coumarin anticoagulant

• Non-narcotic analgesics • Tricyclic agents

a Selective serotonin reuptake inhibitors
b Non-steroidal anti-inflammatory drugs
c Angiotensin converting enzyme inhibitors
d Selective serotonin norepinephrine reuptake inhibitors
e Angiotensin receptor blockers
f Histamine H2 receptor antagonists
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Genotype analysis

Single nucleotide polymorphism (SNP) genotyping was

performed on an Applied Biosystems 7500 real-time PCR

System (Applied Biosystems, Foster City, CA). Assay

reagents for each SNP were obtained from Applied Bio-

systems (rs10811661, Assay ID: C_31288917_10;

rs2383206, Assay ID: C_1754669_10). DNA was geno-

typed according to the manufacturer’s protocol. Briefly, the

reaction components for each genotyping reaction were as

follows: 10 ng of DNA, 5 ll of TaqMan Genotyping

Master Mix (Applied Biosystems, Foster City, CA), 0.25 ll

of assay mix (409), and water up to a total volume of 10

ll. The thermocycler conditions were as follows: 50�C for

2 min, 95�C for 10 min, and 40 cycles of 95�C for 15 s and

60�C for 60 s. The reaction was then analyzed by Applied

Biosystems Sequence Detection Software.

Statistical analysis

The HelixTree (Golden Helix, MT, USA) software package

was used to analyze relationship of clinical variables using

split-prediction methodology to either partition the data

into subgroups or perform logistic regression on a predictor

variable. For a binomial predictor (e.g., diagnosis code), all

the observations with ‘‘0’’ as the predictor variable (i.e.,

lacking a diagnosis) are placed in one group, and all of the

observations with a ‘‘1’’ as the predictor variable (i.e.,

carrying the diagnosis) are placed in a second group. A

two-sample t-test is used to determine the probability that

the two groups have the same mean. For a continuous-

ordinal predictor (e.g., numeric lab value), observations are

segmented into k subgroups, each with a different mean.

The k - 1 cut-points that optimally split the data in a

maximum likelihood sense are reduced by minimizing the

sum of squared deviations of the subgroup means from the

observations. An F-test was used to generate a raw P-

value. An adjusted P-value (aP) was calculated by curve-

fitting thousands of simulations. A Bonferroni corrected P-

value (bP) was also calculated. A conservative threshold of

a bP-value of \0.05 was used for all analyses. HelixTree

was also used to determine differences in genotype and

allele frequencies, estimate deviation from Hardy–Wein-

berg equilibrium, and to examine the association of SNPs

with database variables. Graphical representation of data

was performed using the KaleidaGraph software applica-

tion (Syngergy Sofware, PA).

Results

More than 100 clinical variables (Table 1) were extracted

from the EHR on a total of 824 patients who were

consented as part of a bariatric surgery clinical research

program on the genetics of obesity and related co-mor-

bidities. Data in the EHR was obtained from a

comprehensive history and physical examination per-

formed on the initial visit, with laboratory measurements

obtained within one month prior to surgery.

To define a population of morbidly obese patients for

study, 49 patients (5.9%) whose body mass index (BMI)

was\40, as well as 16 patients (1.9%) whose height and/or

weight data were missing, were excluded from the analysis

leaving 759 patients. Genotyping was then performed on

available DNA from 709 of these patients. Gender, age,

race, diagnoses, and medication use were obtained from the

EHR on all patients. Values for laboratory measurements

were obtained on at least 98% of patients for glomerular

filtration rate, glucose, bun, sodium, potassium, chloride,

CO2, calcium, and creatinine; on at least 97% of patients

for white blood cell count (wbc), red blood cell count (rbc),

hemoglobin (hgb), hematocrit (hct), mean cell volume

(mcv), mean cell hemoglobin (mch), mean cell hemoglobin

concentration (mchc), and red cell distribution width (rdw);

on at least 96% of patients for triglycerides, cholesterol,

high density lipoprotein cholesterol (hdl), alanine amino-

transferase (alt), aspartate aminotransferase (ast), alkaline

phosphatase, total bilirubin, and thyroid stimulating hor-

mone (tsh); and on at least 94% of patients for low density

lipoprotein cholesterol (ldl calculated), insulin, and

hemoglobin A1c. Values were obtained on lower percent-

ages of patients for iron (81%), iron binding capacity

(81%), ferritin (81%), platelet count (86%), mean platelet

volume (86%) albumin (33%), and total protein (33%). An

‘‘iron panel’’ (iron, iron binding capacity, and ferritin) was

added to the clinical protocol after recruitment had begun,

which accounts for the lower percentage of patients for

those values. A platelet count and mean platelet volume

were not reported if a hemoglobin and hematocrit was

ordered rather than a complete blood count, which likely

accounts for the lower percentage for these patients. Total

protein and albumin were ordered only if nutritional status

was deemed clinically necessary to evaluate.

Patients

The cohort consisted of 709 patients with BMI measure-

ments of 40 or greater with a 97.5% self reported/clinically

verified Caucasian ethnicity. Other demographic and rele-

vant clinical data are shown in Table 2.

Clinical correlates of T2D and CHD

The database was used to determine whether expected

relationships could be found with diabetes (i.e., ICD-9 code

250), defined as a binary variable for both split prediction
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analysis and regression analysis using the Golden Helix

statistical software package. Of the more than 150 variables

examined, the diagnosis of diabetes was associated with 35

following Bonferroni correction (bP \ 0.05). The top ten

statistically related measures to ICD-9 code 250 in the

database are shown in Table 3 (3 variables represented by

both split prediction and regression analyses). All can be

directly related to diabetes. Pre-operative hemoglobin A1C

was the most highly correlated (by regression) followed by

the diabetes medication biguanides, hemoglobin A1c (split

prediction), and insulin. The use of the statin class of lipid

lowering drugs was also related, as was age (by both split

prediction and regression). All of the relationships are

expected based upon the clinical findings in diabetes.

A similar analysis was completed for CHD (i.e., defined

as ICD-9 code 414 by clinical staff) as a dependent variable

(Table 4). A total of 13 of the database variables were

found to be statistically significant following Bonferroni

correction (bP \ 0.05). CHD medications including

nitrates, beta blockers, platelet aggregation inhibitors,

aspirin, statins and fibric acid derivatives, age (regression

and split prediction), and gender were all statistically

related, as was the diagnosis of hypercholesterolemia.

Genotypic correlates of T2D and CHD

A total of 709 patient DNA samples were genotyped for the

chromosome 9p21 T2D SNP (r10811661) and CHD SNP

(rs2383206) SNP variants (Table 5). Patients were defined

as carriers of the ‘‘C’’ and/or ‘‘T’’ DNA sequences at the

T2D SNP and the ‘‘G’’ and/or ‘‘A’’ DNA sequences at the

CHD SNP. The T2D ‘‘T’’ SNP and the CHD ‘‘G’’ SNP are

considered the high risk SNPs. The frequencies of the

minor alleles of the T2D SNP and the CHD SNP (0.49 vs.

0.48) reported for control populations (McPherson et al.

2007; Saxena et al. 2007) are in good agreement with the

results here (0.17 vs. 0.17 for T2D and 0.49 vs. 0.48 for

CHD).

To determine whether the population was genetically

skewed through inbreeding or strong founder effects, a

statistical test for Hardy–Weinberg equilibrium was per-

formed. Both SNPs were found to be well within Hardy–

Weinberg equilibrium (T2D P[0.19; CHD P[0.81). The

frequency of the SNP alleles is thus consistent with an

outbred mixed Caucasian/European population.

Because the SNPs are located within 20,000 bases of

each other on chromosome 9, the extent of linkage dis-

equilibrium between them was determined. No significant

linkage disequilibrium was observed (LD Correlation R =

0.034), consistent with their presence in two distinct two

haplotype blocks.

The diploid SNP sequences or genotypes (i.e., T2D

‘‘CC’’, ‘‘CT’’, and ‘‘TT’’; CHD ‘‘AA’’, ‘‘AG’’, and ‘‘GG’’),

of each patient for each gene were also analyzed (Table 6).

The T2D homozygous high risk ‘‘TT’’ genotype was

present in *70% of the population and the CHD homo-

zygous high risk ‘‘GG’’ genotype was present in *27%,

consistent with previous studies. The T2D heterozygous

‘‘CT’’ and the CHD heterozygous ‘‘AG’’ genotypes were

present at *27% and *50%, respectively. The low risk

T2D genotype ‘‘CC’’ was present in *3.5% of the popu-

lation and the low risk CHD genotype ‘‘GG’’ was present in

*24%.

The relationship of the T2D and CHD SNP genotypes to

the approximate 100 clinical variables obtained from the

EHR was analyzed using the HelixTree Genetics Analysis

Software. The initial analysis was performed using the

individual T2D and CHD SNP genotypes (i.e., T2D ‘‘CC’’,

‘‘CT’’, and ‘‘TT’’; CHD ‘‘AA’’, ‘‘AG’’, and ‘‘GG’’). For

T2D SNP rs10811661, two variables were found to be

significantly different (bP \ 0.05); the percentage of

patients with the diagnoses of polycystic ovary syndrome

(PCOS) and the diagnosis of hypertension (HTN).

Table 2 Demographic and selected clinical data on patient cohort (n
= 709)

Age (years) BMIa (kg/m2) T2Db (%) CHDc (%) HGB A1Cd (%)

45.9 51.2 37 2.4 6.4

a Body mass index
b Type II diabetes
c Coronary heart disease
d Hemoglobin A1c

Table 3 Clinical variables with highest statistical relationship to

diagnosis code for diabetes (ICD-9 250)

Variable P-value aP-value bP-value

HEMOGLOBIN_A1C 3.90E-61 3.90E-61 8.00E-59

MED BIGUANIDES 4.54E-54 4.54E-54 9.31E-52

HEMOGLOBIN_A1C 8.61E-67 1.26E-51 2.59E-49

MED INSULIN 4.19E-41 4.19E-41 8.59E-39

GLUCOSE 1.66E-36 1.66E-36 3.41E-34

MED INS SENS AGENTa 6.92E-35 6.92E-35 1.42E-32

MED SULFONYLUREAS 5.47E-32 5.47E-32 1.12E-29

GLUCOSE 4.60E-43 5.21E-30 1.07E-27

MED STATINS 2.07E-22 2.07E-22 4.25E-20

AGE 1.89E-21 1.89E-21 3.87E-19

GLUCOSE MONITOR 3.10E-21 3.10E-21 6.35E-19

AGE 1.46E-19 2.17E-14 4.46E-12

BUNb 7.67E-14 7.67E-14 1.57E-11

Hemoglobin A1c, glucose, and age found by both split prediction and

regression analyses
a Medication-Insulin Sensitizing Agent
b Blood Urea Nitrogen
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Interestingly, no patients with the CC genotype were

diagnosed with PCOS and, correspondingly, a lower per-

centage had the diagnosis of HTN (Fig. 1). The mechanism

by which this gene variant is related to PCOS and HTN is

not clear.

For CHD SNP rs2383206, 3 variables met the bonfer-

roni corrected P-value threshold of 0.05; the percentage of

patients on tricyclic antidepressants and sulfonylureas, as

well as the laboratory value creatine kinase (CK). A fourth

variable, the percentage of patients on statins, had a bP-

value of 0.064. The genotype distribution patterns for tri-

cyclic antidepressant and sulfonylurea use were different

than for CK and statins. The AG heterozygotes had the

highest use of tricyclics and sulfonylureas relative to AA

and GG homozygotes (Fig. 2). The AG and GG genotypes

had higher statin use. The GG CHD high risk genotype had

CK levels that were over 2-fold higher than the non-GG

genotypes (GG = 196 vs. AG = 86 vs. AA = 92).

Recognizing that each patient inherits the T2D and CHD

risk alleles independently, we tested for compound genotype

(i.e. T2D/CHD ‘‘CC’’/‘‘AA’’, ‘‘CC’’/‘‘AG’’, ‘‘CC’’/‘‘GG’’,

‘‘CT’’/‘‘AA’’, ‘‘CT’’/‘‘AG’’, ‘‘CT’’/‘‘GG’’, ‘‘TT’’/‘‘AA’’,

‘‘TT’’/‘‘AG’’, and ‘‘TT’’/‘‘GG’’) associations. Each T2D and

CHD genotype was classified as low (L), medium (M), and

high (H) risk based upon the predicted risk group from pre-

vious studies (McPherson et al. 2007; Saxena et al. 2007).

Thus, each patient could be categorized as T2D LOW/CHD

LOW or L/L (‘‘CC’’/‘‘AA’’) through T2D High/CHD High

or H/H (‘‘TT’’/‘‘GG’’).

A total of 19 EHR derived variables (Table 7) were found

to be statistically significant among the groups (bP\0.05).

The percentage of patients diagnosed with CHD was influ-

enced by both SNPs; 4 of 5 compound genotypes with a low

risk genotype had no patients diagnosed with CHD (Fig. 3).

Table 4 Clinical variables with

highest statistical relationship to

diagnosis code for ischemic

heart diseases (ICD-9 code 414)

Age was found by both split

prediction and regression

analyses
a Medication-Platelet

Aggregation Inhibitor
b Medication-Acetyl Salicylic

Acid (aspirin)
c Diagnosis-

Hypercholesterolemia

Variable P-value aP-value bP-value

MED NITRATES 1.11E-30 1.11E-30 2.28E-28

MED CARDIO BETA BLOCKER 4.12E-22 4.12E-22 8.44E-20

MED PLT AGG INHa 1.36E-12 1.36E-12 2.79E-10

MED FIBRIC ACID 1.86E-11 1.86E-11 3.81E-09

MED ASAb 1.87E-09 1.87E-09 3.82E-07

MED STATIN 3.00E-08 3.00E-08 6.15E-06

AGE 3.06E-07 3.06E-07 6.28E-05

MED COUMARIN 4.12E-07 4.12E-07 8.46E-05

PARENTERAL 1.77E-06 1.77E-06 0.000361909

MED VITAMINS 5.65E-06 5.65E-06 0.001158545

AGE 1.66E-08 2.94E-05 0.006024747

GENDER 3.34E-05 3.34E-05 0.006848651

DX HYPERCHOLc 0.000159867 0.00015987 0.032772772

Table 5 Frequencies of the SNP DNA sequences

Marker Allele Allele count Allele freq.

rs10811661 C 239 0.17

rs10811661 T 1179 0.83

rs2383206 A 685 0.48

rs2383206 G 733 0.52

Table 6 Frequencies of T2D and CHD SNP genotypes

Marker Genotype Count Freq.

rs10811661 C_C 25 0.035

rs10811661 C_T 189 0.267

rs10811661 T_T 495 0.698

rs2383206 A_A 167 0.236

rs2383206 A_G 351 0.495

rs2383206 G_G 191 0.269

Fig. 1 Association of T2D SNP rs10811661 with the diagnosis of

polycystic ovary syndrome (PCOS) and the diagnosis of hypertension

(HTN). No patient with a ‘‘CC’’ genotype was diagnosed with PCOS
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A similar pattern was present for the diagnoses of respiratory

disorders (Fig. 4) and neurotic disorders (Fig. 5). The dis-

tribution of patients on thiazide diuretics was skewed toward

low risk T2D/CHD alleles (Fig. 6). Patterns for the other

associated variables were more complex and did not trend

toward low or high risk genotypes.

Discussion

The resource intensive nature of genomic medicine

research stems both from costs related to DNA analysis,

i.e., genotyping, as well as the costs and logistical chal-

lenges related to acquiring clinical data, i.e., phenotyping.

While significant gains have been made in recent years in

the cost-effectiveness of genotyping technologies, the

methods used to recruit and profile clinical phenotypes

have not changed and continue to rely on labor intensive

processes. The advent of EHRs, pioneered by large inte-

grated health delivery systems, may now provide a

potentially rich source of phenotypic data for genomic

medicine research (Gerhard et al. in press). Use of patient

populations served by integrated delivery systems, related

biobanked samples, and EHR data can substantially reduce

the labor and time required to complete such studies. The

use of EHRs to acquire phenotype data does not alter the

essential nature of phenotyping; rather, it provides access

to data that has already been gathered, and paid for, during

the course of clinical care. The conversion of disparate

clinical data sources (e.g., laboratory data, diagnostic

coding, survey data, etc.) into an electronic format allows

for efficient data extraction and database construction.

A potential limitation to the use EHR-derived data for

genetics research is data quality (Thiru et al. 2003). Vari-

ation in completeness and quality of EHR data may be

affected by different practices among staff and clinicians

(Treweek 2003), potentially impacting consistency and

accuracy of phenotypic definitions. The extent to which

these and other issues impact data collection will vary from

institution to institution, depending upon the capability of

the specific EHR, how it is used in clinical operations, and

which data domains are used (Persell et al. 2006). For

example, laboratory values provide a relatively objective

source of EHR data, while consistency of clinical defini-

tions may vary if derived from a variety of clinicians (de

Lusignan 2006) or if data must be extracted from free text

(Voorham and Denig 2007). These concerns are mitigated

to a large degree in this study through the acquisition of

most data from a single clinic using a care delivery process

that was optimized for obtaining from the EHR for

research. All diagnosis and medication codes were derived

from the initial comprehensive examination performed by

the same staff using a common process, equivalent to a

single visit data collection interview with a research par-

ticipant. A standard set of laboratory values was measured

as part of the clinical evaluation, and the testing was per-

formed at the same laboratory using consistent methods.

The true potential of the EHR for genomic medicine may

exist in the ability to modify existing clinical processes to

allow for research-grade data collection. The data pre-

sented here support the feasibility of this approach and

represents one of the first examples of EHR-based genomic

medicine research.

The depth and breadth of the data extracted from the

EHR may also be useful for unraveling the complex

interactions involving obesity, T2D, and CHD which are

likely caused by a combination of genetic susceptibility

and environmental effects. Substantially increasing the

number of EHR variables extracted and analyzed carries

only small incremental costs but greatly increases the

potential to identify new genotype–phenotype correlations.

For example, while an association with T2D was not found,

the T2D SNP was related to the diagnoses of polycystic

ovary syndrome (PCOS) and hypertension (HTN). PCOS

has been associated with metabolic syndrome, a greatly

increased risk of impaired glucose tolerance and type 2

diabetes mellitus, potential cardiovascular risks, and has a

substantial genetic component (Norman et al. 2007). A

number of other SNP-phenotype associations were identi-

fied that remain to be replicated and further explored.

Unfortunately, little is known about the biological impact

the SNPs. They are both located within about 20,000 bp of

each other in an inter-genic region on chromosome 9p21

Fig. 2 Association of CHD SNP rs2383206 with tricyclic antide-

pressant, sulfonylurea, and statin use. The ‘‘AG’’ heterozygotes had

the highest tricyclic and sulfonylurea use, while statin use was higher

in patients carrying a ‘‘G’’ allele
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upstream of cyclin-dependent kinase inhibitors CDKN2A

and CDKN2B, but it is not known whether the SNPs have a

long-range effect on one of these genes or influence

another gene(s).

A unique aspect of the cohort analyzed here was the

level of obesity. The range of BMI values in the population

studied here, 40–88 kg/m2, is more than double the range in

most other studies, i.e., 20–40 kg/m2. The T2D and CHD

SNPs were identified using non-obese, overweight, and/or

mildly obese populations. For example, the CHD SNP

rs2383206 was identified in populations of predominantly

Caucasian men who had severe, premature CHD and was

replicated in a much larger prospective study of CHD risk

in Caucasian men and women (McPherson et al. 2007). We

did not replicate these findings in a population consisting of

primarily Caucasian, middle aged, morbidly obese women.

Table 7 Clinical variables with statistical association with type 2 diabetes/coronary heart disease compound genotypes

Variable Total L/L M/L H/L L/M L/H M/M H/M M/H H/H

DX HTNa 0.46 0.75 0.40 0.45 0.29 0.14 0.42 0.50 0.33 0.48

DX ERDb 0.25 0.00 0.37 0.23 0.07 0.14 0.27 0.25 0.16 0.28

DX DJDc 0.22 0.50 0.28 0.17 0.21 0.57 0.26 0.17 0.25 0.24

DX LOTHYRd 0.13 0.25 0.07 0.13 0.00 0.00 0.10 0.17 0.11 0.11

DX SOFTISSe 0.04 0.00 0.07 0.01 0.00 0.14 0.05 0.05 0.02 0.01

DX CHDf 0.02 0.00 0.02 0.00 0.00 0.00 0.03 0.03 0.07 0.02

DX BACKg 0.02 0.00 0.02 0.03 0.00 0.00 0.01 0.02 0.00 0.06

DX RESPh 0.02 0.00 0.00 0.03 0.00 0.00 0.04 0.01 0.05 0.02

DX NEUROTICi 0.04 0.00 0.00 0.02 0.00 0.00 0.03 0.06 0.02 0.03

MED NITRATESj 0.05 0.00 0.05 0.01 0.07 0.00 0.04 0.07 0.09 0.04

MED BENZOk 0.08 0.25 0.00 0.06 0.00 0.14 0.09 0.10 0.05 0.10

MED STER INHl 0.05 0.25 0.02 0.05 0.21 0.00 0.02 0.08 0.04 0.03

MED SNRIsm 0.06 0.25 0.09 0.02 0.00 0.00 0.08 0.06 0.04 0.09

MED TRICYCLICn 0.06 0.00 0.05 0.02 0.07 0.00 0.05 0.11 0.02 0.02

MED STATINSo 0.22 0.25 0.21 0.11 0.29 0.14 0.30 0.22 0.27 0.22

MED INT CHOLp 0.02 0.00 0.02 0.04 0.00 0.14 0.00 0.01 0.00 0.02

MED ANTI-HTNq 0.12 0.25 0.05 0.11 0.00 0.00 0.18 0.11 0.09 0.14

MED COLDr 0.04 0.00 0.00 0.07 0.07 0.29 0.04 0.02 0.00 0.04

MED THIAZIDEs 0.11 0.25 0.07 0.16 0.14 0.00 0.09 0.12 0.02 0.08

L = low risk genotype, M = medium risk genotype, H = high risk genotype. Numbers represent proportion of patients with compound genotype

that were diagnosed with indicated condition or were on indicated medication
a Diagnosis-Hypertension
b Diagnosis-Esophageal Reflux Disease
c Diagnosis-Degenerative Joint Disease
d Diagnosis-Hypothyroidism
e Diagnosis-Soft Tissue Disorder
f Diagnosis-Coronary Heart Disease
g Diagnosis-Back Disorder
h Diagnosis-Respiratory Disorder
i Diagnosis-Neurotic Disorder
j Medication-Nitrates
k Medication-Benzodiazapines
l Medication-Steroid Inhalants
m Medication-Selective Serotonin Norepinephrine Reuptake Inhibitors
n Medication-Tricyclic Antidepressants
o Medication-HMG CoA Reductase Inhibitor Drugs
p Medication-Intestinal Cholesterol Absorption Inhibitors
q Medication-Anti-Hypertensives
r Medication-Cold Remedies
s Medication-Thiazide Diuretics
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Age and gender may also be important factors that may

account for the lack of association with the CHD SNP. The

average age of the morbidly obese population was less than

50 years and approximately 80% were female, thus many

patients with genetic susceptibility to CHD may not yet

have manifested any clinical evidence of the disease. In

addition, statistical power may not have been sufficient

given the low prevalence of clinically documented CHD. A

3–4-fold increase in CHD would need to be present in

order to detect an influence of the homozygous CHD

genotype given a prevalence of about 2%.

The T2D SNP rs10811661 was identified by two groups

(Saxena et al. 2007; Scott et al. 2007) using populations of

predominantly male non-obese patients from Finland and

Sweden. We could not replicate these findings either,

although no association of this SNP was found with several

anthropometric traits, glucose tolerance and insulin secre-

tion, lipids and apolipoproteins, and blood pressure, similar

to our findings of no association with any lipid or diabetes

related parameters. With the high frequency of the at risk

T2D ‘‘AA’’ genotype and the high prevalence of T2D in

Fig. 3 Frequency of diagnosis of CHD among patients with each

T2D and CHD SNP compound genotype. The pattern is skewed

toward those carrying the medium (M) and high (H) risk genotypes

Fig. 4 Frequency of diagnosis of respiratory disorders (RESP)

among patients with each T2D and CHD compound genotype. The

pattern is skewed toward those carrying the medium (M) and high (H)

risk genotypes, similar to the pattern with CHD

Fig. 5 Frequency of diagnosis of neurotic disorders among patients

with each T2D and CHD compound genotype. The pattern is skewed

toward those carrying the medium (M) and high (H) risk genotypes,

similar to the pattern with CHD

Fig. 6 Frequency of thiazide medication use among patients with

each T2D and CHD compound genotype. The distribution is skewed

toward those with low risk genotypes
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our population, the analyses were sufficiently powered

([0.8) to detect a *1.3 increased risk of T2D.

The results reported here represent studies of SNPs

initially identified using genome wide association

approaches. In addition to serving as a rapid and efficient

means of evaluating the findings of such genome wide

association studies, EHR data may also be useful as the

primary source of phenotypes for genome wide associa-

tion studies.
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