‘The future of genomic medicine’—satellite symposium at the American Society of Human Genetics meeting, 22 October 2007, San Diego, CA, USA
The medical and health applications of genome sciences and technologies were a highlight of the programme for the last annual meeting of the American Society of Human Genetics (23–27 October 2007) held in San Diego, CA, USA. The importance of genomic medicine was elegantly presented at a satellite meeting held on 22 October 2007. This meeting was appropriately entitled ‘The future of genomic medicine’ and was attended by several delegates. It was a joint initiative by Scripps Genomic Medicine, a joint collaboration between Scripps Health and the Scripps Research Institute, and the J. Craig Venter Institute, founded by J. Craig Venter, representing its two divisions—The Institute for Genome Research (TIGR) and The Center for the Advancement of Genomics (TCAG). The conference faculty included several key researchers led by Dr. Eric J. Topol, an eminent clinical cardiologist and the Professor of Translational Genomics and the Director of the Scripps Translational Science Institute. He is also a practising senior cardiologist at the Scripps Clinic Division of Cardiovascular Diseases in La Jolla, California.
The guest faculty included several eminent invited speakers who delivered high quality lectures on a broad range of topics. Professor Eric Topol started deliberations by highlighting gaps and fallacies that exist in the current clinical practice. He cited examples for which applications of genomics would offer a reliable and effective approach. The importance of human genome variation in the form of SNPs and copy number variations (CNVs) was reflected in several presentations (Feuk et al. 2006; Redon et al. 2006). Professor Leena Peltonen from Helsinki in Finland presented the scope of complex traits mapping in managing common complex medical diseases such as diabetes mellitus, cancer and heart disease. The symposium covered advances and clinical applications of proteomics (Yates et al. 2005), metabolomics (Duarte et al. 2007), and cancer pharmacogenomics (Cheok and Evans 2006). Reports on genome wide studies in immune diseases (The Wellcome Trust Case Control Consortium 2007), autism (The autism genome project consortium 2007), cancer (Sjöblom et al. 2006) and cardiovascular disorders (The Wellcome Trust Case Control Consortium 2007) were stimulating for enthusiastic young researchers. Each session was concluded with a panel discussion involving speakers and moderators.
The symposium finished with a splendid talk by Dr. Samuel Levy, Senior Scientist at the J. Craig Venter Institute in Rockville, Maryland. He presented a full account of the sequencing of the diploid genome of Dr. J. Craig Venter who is renowned for his pioneering work on sequencing the Human Genome (Levy et al. 2007). This is probably the first step towards the goal of individualized genomic medicine achieved through the acquisition of diploid genome sequences at high accuracy and low cost. Dr. J. Craig Venter volunteered to have his complete diploid genome sequenced using Sanger sequencing technology. This revealed 0.5–1.0% sequence difference between chromosome copies. When inspecting contributing sequence reads and comparing the HuRef assembly to the NCBI version 36 human genome, it was possible to describe 4.1 million DNA variants, encompassing 12.3 Mb. Whilst 22% of these variants were insertion/deletion events (indels) the remaining 78% being SNP; they constitute the vast majority (74%) of all variant bases. This suggests an important role for non-SNP variants in defined diploid structure. Heterozygous variants occur in the untranslated and protein coding exons of 44% of all genes (10,208/23,224) suggesting a significant portion of the transcriptome is impacted by differential states of the diploid genome. This has led to some interesting stipulations made on Dr. Craig Venter’s genetic predisposition for medical diseases and association with his behavioural characteristics.