The effective application of the technologies mentioned above faces some key barriers and challenges which occur at three stages: from the research to the products, from the products to individual patients, and, finally, from patients to entire populations.
Barrier 1—The R&D barrier: from publications to products
The central questions here is: “are we doing the right science to get the appropriate knowledge and interventions with regards to both the areas and the types of research?
It has been estimated that approximately $160 billion was invested in global health research & development globally, compared to $85 billion in 1998 and $30 billion in 1986 (Burke and Matlin 2008). Despite this influx of funds, gaps and imbalances continue to exist in the research process. The existence of the “10/90 gap”, for example, is well known where only 10% of global health research funding is spent on 90% of the global disease burden. There also exists a well-known market failure in producing drugs for neglected tropical diseases in the developing world—of 1,556 new drugs developed between 1975–2004, only 21 (1.3%) were for these diseases (Chirac and Torreele 2006). In terms of support for various research areas, a recent report analyzing funding patterns among more than 100 donors found that 80% of the funding were allocated to HIV/AIDS, TB and malaria (Moran et al. 2009). In another analysis of the types of research funded by the major UK agencies, it was found that an average of only 1% of funding was allocated to health services research (Rothwell 2006) with the bulk of the funding going to biomedical, clinical and epidemiological research.
More tellingly, most of the funding for health research is focused on the development of new technologies, rather than making use of existing interventions—in one analysis, 97% of grants were for the development of these new technologies which was estimated to be able to reduce child mortality by 22% (Leroy et al. 2007). However, if, instead, research were focused on making better use of existing technologies, the reduction in mortality can be much higher at 66%. In the future, a lot more attention needs to be paid to this field of implementation research.
Barrier 2—the translation barrier: from products to patients
In the context of this barrier the key question is “do we have the most efficient processes to ensure that effective products benefits the patients?” In spite of the large amounts of resources going into global health R&D, the number of new drugs in the pipeline is actually decreasing as exemplified by the lower number of new antibiotics coming on the market. Clinical trials, the cornerstone of getting drugs and other interventions to patients, are facing major problems with regards to high costs, difficulties in recruitment of trial participants, more regulations and concerns about transparency and accountability. These concerns include unethical behavior on the part of pharmaceutical companies, publication bias, and the non-reporting of adverse events or negative results. Importantly, the developing countries will be affected as it has been estimated that nearly 20% of clinical trials globally now take place in the developing world, up from in 9% in 2003 (Normile 2008). Most of the increases are occurring in Russia, India, China and Brazil. The main reasons for increasing interest in conducting trials in the developing world relate to lower costs, accelerated recruitment and perceived ease of overcoming ethical and regulatory barriers. There is also some concern about the over-regulation of clinical trials, specifically the requirements to adhere to the ICH-GCP guidelines which places too much emphasis on the process rather than on the benefits to the patients (White 2006; Farrar 2007). These bureaucratic requirements also place clinical trials beyond the reach of most developing country investigators and disempowers them from truly participating in the research and sharing in the benefits.
Inefficiencies have also been noted in the diagnostics field and an important question in this regard is “what is the human and economic costs of bad diagnostics?” Many developing countries lack stringent evaluation of diagnostic tests and, in the case of dengue diagnostics, for example, the claims of manufacturers were found to be well short of acceptable standards (Blacksell et al. 2006). In a more comprehensive analysis of diagnostic evaluations reported in journals from 1978–1993, it was found that less than half of the studies fulfilled more than three of the seven methodological standards for diagnostics (Peeling et al. 2006).
Barrier 3—the implementation barrier: from patients to people
In some ways this is the most challenging of the three barriers and focuses on the question “do we have the needed delivery systems to get interventions to those in greatest need?” Health systems failures and lack of access to the most basic interventions are at the heart of the problem. For example, Jones et al. (2003) found that less than 50% of children in the developing world were receiving basic, proven, effective and cheap interventions such as vitamin A, tetanus immunization and insecticide-treated bednets. Tragically, the gap in coverage for four interventions (family planning, maternal and neonatal care, immunization, and treatment of sick children) was larger for the poorer segments of the population living in these countries (WHO 2008). There are many reasons for these failures of delivery but foremost among them are the shortage of health workers, lack of reliable health information, insufficient financing and poor infrastructure. In relation to health workers, for example, Africa, which bears 25% of the global burden of disease only has 2–3% of the global health work force (WHO 2006). In addition, in many low-income countries the recent deluge of external aid delivered through multiple global health initiatives has created additional problems and strains on already weak and fragile health systems. There is evidence of fragmentation and lack of coordination between these initiatives and they tend to be “top down” and donor-driven, with a focus on short-term results around “big” diseases, thus creating vertical “silos”, rather than overall health system strengthening. In Haiti, for example, a focus on HIV/AIDS testing and treatment resulted in the neglect of testing for syphilis with the result that children born to HIV-positive mothers were avoiding HIV/AIDS but dying of syphilis (Peeling et al. 2004). With many of these initiatives there is also a lack of evaluation of the impact of their activities and limited accountability mechanisms, thus bringing into question the longer term sustainability of the activities.
In the context of this third barrier, another important challenge is the weak linkages which exist between research and policy development. Policy makers and researchers have conflicting interests and often do not trust each other (WHO 2004). Importantly, researchers need to present science in a way which is understandable to policy makers and able to answer the three questions they are most concerned with: “can it work, will it work, is it worth it?” As stated previously in a quote attributed to Sir Michael Marmot, the reality is that “scientific findings do not fall on blank minds that get made up as a result. Science engages with busy minds that have strong views about how things are and ought to be” and it is therefore important that researchers and policy makers work together, perhaps through “knowledge brokerage” mechanisms to more effectively use scientific evidence in health policy development. In the context of application of technological advances derived from genomics this is particularly important as the science is often complex and the benefits not immediately obvious to the policy- and decision-makers.